Environmental Quality Commission

REGULAR MEETING MINUTES

Date: 3/17/2021 Time: 6:00 p.m.

Regular Meeting Location: Zoom.us/join – ID# 915 4675 0502

A. Call To Order

Chair Price called the meeting to order at 6:00 p.m.

B. Roll Call

Present: Elkins, Gaillard, Kabat, Martin, Price (Chair), Payne

Absent: London (Vice Chair)

Staff: Rebecca Lucky- Sustainability Manager

C. Public Comment

- Scott Marshall spoke in support of the Environmental Quality Commission including the tree removals from San Francisquito Creek upstream of Highway 101/Pope-Chaucer Bridge project in their work plan.
- Steve Van Pelt shared experience with problematic heritage trees that cause property damage, and advocated for receiving better education upfront about how to manage before they cause damage.

D. Regular Business

D1. Approve January 20 2021 and February 25 2021 minutes

Chair Price introduced item.

ACTION: Motion and second (Martin/ Price) to approve January 20 2021 and February 25 2021 minutes with minor corrections to additional text and pending any revisions to work plan review by commissioners, passed 6-0-1 (London absent).

D2. Informational presentation by Commissioner Gaillard and Kabat on the affordability of building electrification (Attachment)

Chair Price introduced item. Commissioners Kabat and Gaillard provided presentation.

E. Reports and Announcements

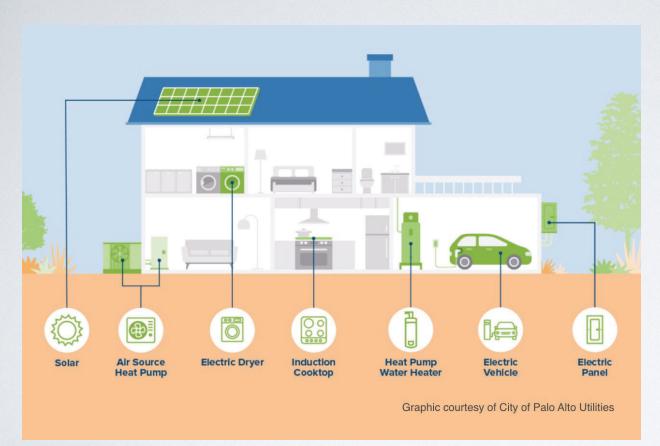
E1. Reports and Announcements from staff and commissioners

Commissioner Martin requested that a future agenda include review of the tree removals proposed for the San Francisquito Creek upstream of Highway 101/Pope-Chaucer Bridge project.

Commissioner Gaillard provided updates on state legislation regarding phasing out gas powered leaf

Environmental Quality Commission Regular Meeting Minutes March 17, 2021 Page 2 of 31

blowers.

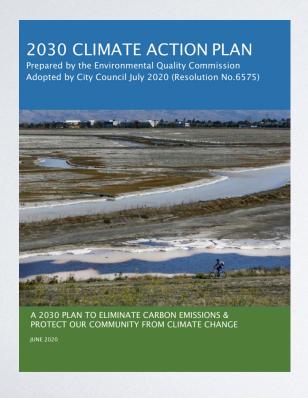

Sustainability Manager provided updates on recent City Council staff reports and decisions regarding the 2030 climate action plan.

F. Adjournment

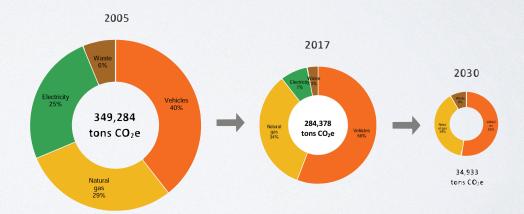
Chair Price adjourned the meeting at 8:19 p.m.

Rebecca Lucky, Sustainability Manager

These minutes were approved on April 21, 2021 by the Commission



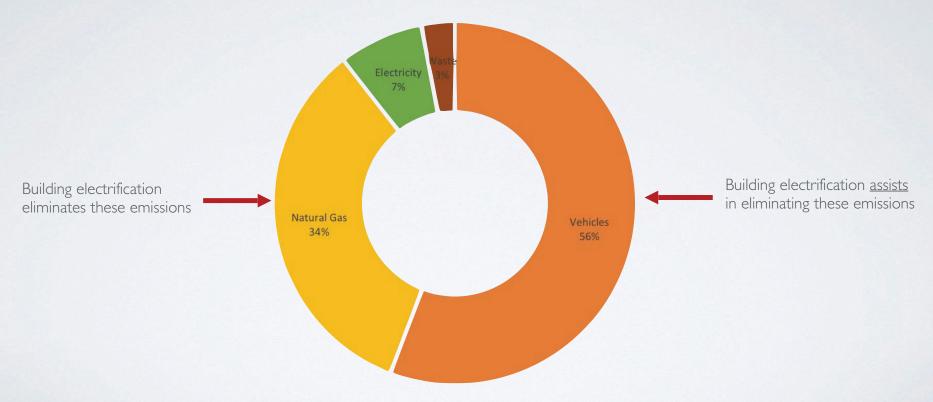
Affordability of Building Electrification


March 17, 2021

Environmental Quality
Commissioners Josie Gaillard and
Tom Kabat

CLIMATE ACTION PLAN

- Adopted by Menlo Park City Council in July 2020
- Sets a goal of 90% reduction in GHG by 2030 and elimination of the remaining 10% through direct carbon removal



MENLO PARK CAP 2020-21

#	Action	2030 GHG Reduction (tons/yr)
I	Explore policy/program options to convert 95% of existing buildings to all-electric by 2030	1) 86,465 OR 2) 51,636
2	Set citywide goals for increasing EVs and decreasing gasoline sales	7,120
3	Expand access to EV charging	7,370
4	Reduce vehicle miles traveled (VMT) by 25% or an amount recommended by the Complete Streets Commission	31,743
5	Eliminate the use of fossil fuels from municipal operations	879
6	Develop a climate adaptation plan to protect the community from sea level rise and flooding	0
		98,748

GHG EMISSIONS PROFILE

for Menlo Park

Source: City of Menlo Park December 2019 Staff CAP report

Environmental Quality Commission Regular Meeting Minutes March 17, 2021

ELEMENTS OF ELECTRIFICATION POLICY

- Legal
- Technical
- Market development
- Enforceability
- Affordability

AFFORDABILITY OF ELECTRIFICATION

Basic questions:

- 1. What does it cost to fully electrify an existing single-family home in San Mateo County?
- 2. Can we make the transition costs affordable enough to pass city ordinances?
- 3. What levers do policy makers and utilities have to achieve affordability?
- 4. What pieces of the puzzle need to be put in place?
- 5. What partnerships are needed?
- 6. What can we learn from development of rooftop solar installation or other industries?

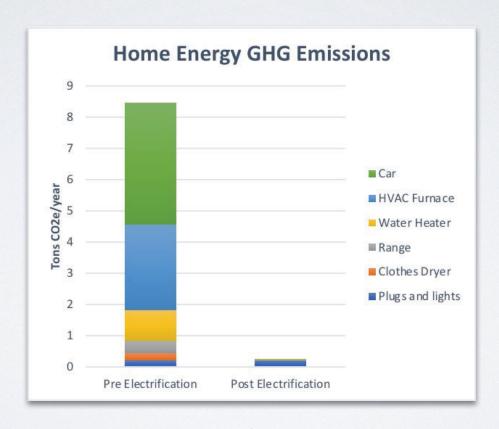
WHAT IS BUILDING ELECTRIFICATION?

Replacing all fossil fuel appliances in the building:

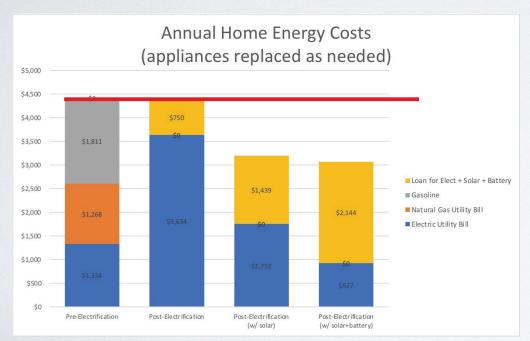
#1 gas furnace

#2 gas dryer

#3 gas range


#4 gas water heater

#5 gasoline for car


...with high efficiency electric alternatives

- Rooftop solar (at \$0.05–0.10 per kWh) makes all-electric home conversions <u>affordable</u>
- Battery backup systems make all-electric homes <u>reliable</u> during grid outages

ELECTRIFICATION NEARLY ELIMINATES BUILDING GHG EMISSIONS

WHAT DOES IT COST TO ELECTRIFY?

Annual Home Energy Costs	Pre- Electrification	Post- Electrification	Post- Electrification (w/ solar)	Post- Electrification (w/ solar +battery)
Electric Utility Bill	\$1,334	\$3,634	\$1,752	\$927
Natural Gas Utility Bill	\$1,268	\$0	\$0	\$0
Gasoline	\$1,811	\$0	\$0	\$0
Loan for Elect + Solar + Battery	\$0	\$750	\$1,439	\$2,144
Total	\$4,414	\$4,384	\$3,191	\$3,071

SCENARIO BUILDING ASSUMPTIONS

- · Typical single family home in Menlo Park, California
- Built mid-century with some energy efficiency upgrades (attic insulation and duct insulation) but no major remodel
- 1,500 sq feet
- 100 amp electrical service
- Home owner has good credit

SCENARIO APPLIANCE ASSUMPTIONS

	Starting State	End State	Conversion Yr
Water heating	gas water heater	heat pump water heater	3
Space heating	gas furnace	heat pump HVAC	5
Clothes drying	gas dryer	hybrid heat pump dryer	7
Cooking	gas range	induction range	8
Vehicle fuel	gasoline	electricity (via home EV charger)	
Solar	0 kW	5.8 kW	
Stationary battery	0 kWh	13.5 kWh	3
Electric service	100 amps	100 amps	n/a

"AMP DIET" for 2,000 sq ft home

- For homes with 100 amp electrical panels
- Helps avoid ~\$3,000 electric panel upgrade
- Favors efficient devices w/ low rated amps
- Provides roadmap for building owner
- Helps guide tradespeople

"AMP DIET" for **3,000** sq ft home

- For homes with 100 amp electrical panels
- Uses "circuit sharing" devices like plugin smart splitter Neocharge or hardwired version SimpleSwitch
- Still easy to avoid ~\$3,000 electric panel upgrade

A HOW TO GUIDE FOR ELECTRIFICATION

Pocket Guide to Home Electrification Retrofits.pdf A Pocket Guide to All-Electric Retrofits of Single-Family Homes REDWOOD ENERGY February 2021

- Just released by Redwood Energy and Menlo Spark
- Electrification solutions for existing buildings
- Product lists
- Case studies from across the country
- Amp diet info
- Cost examples
- https://redwoodenergy.net/wp-content/uploads/ 202 I/02/Pocket-Guide-to-All-Electric-Retrofits-of-Single-Family-Homes.pdf

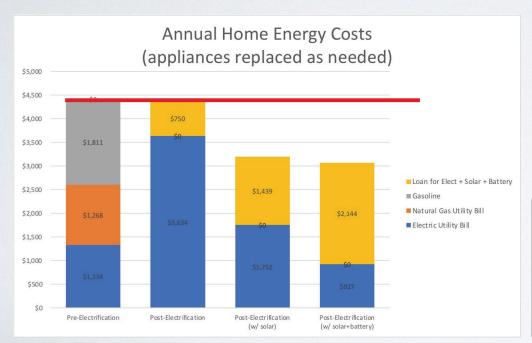
APPLIANCE INSTALLATION COST ASSUMPTIONS

Capital Costs - Electrification					n In n	1 10 10							
	Electric Equipment Installation Equivalent Gas Equipment Installation												
New Electrific Equipment	Included in Project?	Equip Cost	Labor Cost	Wiring Cost	Permit Cost (Fee + Labor)	Installed Cost Before Incentives	Incentives	Total Cost Electric	Equip Cost	Labor Cost	Permit Cost	Total Cost Gas	Premiu m: Electric v. Gas
Electric service upgrade	no	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
New electric subpanel	no	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Heat pump water heater	yes	\$1,300	\$1,200	\$400	\$500	\$3,400	(\$2,500)	\$900	\$600	\$400	\$400	\$1,400	(\$500)
Heat pump HVAC	yes	\$5,000	\$4,000	\$550	\$1,000	\$10,550	\$0	\$10,550	\$3,000	\$2,000	\$500	\$5,500	\$5,050
Hybrid Dryer	yes	\$1,500	\$0	\$300	\$0	\$1,800	\$0	\$1,800	\$700	\$100	\$0	\$800	\$1,000
Induction Range	yes	\$3,000	\$0	\$600	\$0	\$3,600	\$0	\$3,600	\$1,200	\$100	\$0	\$1,300	\$2,300
EV charger	yes	\$500	\$0	\$600	\$400	\$1,500	\$0	\$1,500	\$0	\$0	\$0	\$0	\$1,500
TOTAL		\$11,300	\$5,200	\$2,450	\$1,900	\$20,850	(\$2,500)	\$18,350	\$5,500	\$2,600	\$900	\$9,000	\$9,350

ROOFTOP SOLAR ECONOMICS

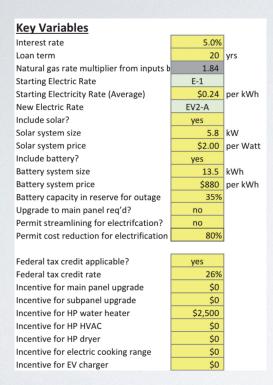
Solar System Size	5.8	kW
Solar System Price*	\$2.00	per watt
Total Price of Solar System	\$11,600	
Federal Tax Credit - 26%	\$3,016	
Solar System Cost After Tax Credit	\$8,584	
Average Full Sun Equiv	1,600	hours per
Average Daily Insolation	4.38	hours per day
Daily Solar Array Output	25	kWh per day
Annual Solar Array Output	9,280	kWh per year
Solar System Life	25	years
Derating Factor due to Aging	20%	
Derating Factor from Size Clipping	<u>7%</u>	
Derated Annual Solar Array Output	6,922	kWh per year
Solar Electricity Cost (ex. loan)	\$0.05	per kWh
Annual Loan Payment on System**	\$689	
Solar Electricity Cost (inc. loan)	\$0.10	per kWh
Avoided PG&E Electricity Cost	\$1,661	
Annual Savings from Solar	\$973	

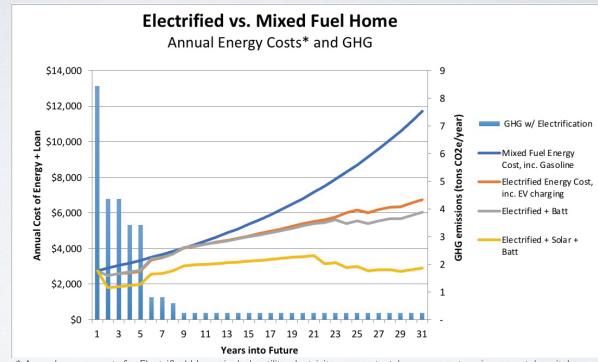
^{*} Note: \$2.00 per watt installed price taken from Tesla's website


^{**} Assumes 5% interest rate and 20 yr term

FINANCE AND OTHER KEY ASSUMPTIONS

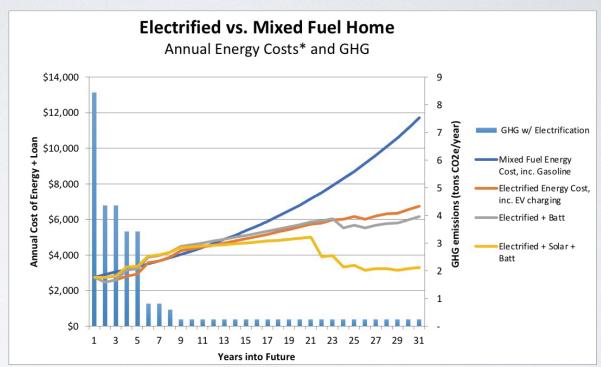
- · Loan term: 20 years
- · Loan interest rate: 5% fixed
- Electrification costs reflect actual prices/ quotes
- Rooftop solar installation cost = \$2.00/watt
- Stationary battery installation cost = \$880/ kWh
- Battery capacity reserved for outages = 35%


- Federal tax credit = 26%
- CCE subsidy = \$2,500 for HP water heater
- End state electric rate: PG&E EV2-A
- Natural gas rates increase by 84% (average) over 20-year term of loan
- 12,000 vehicle miles per year
- 120 degree F target temp for water heater
- 5 laundry loads per week
- 14.5 range "burner hours" per week


WHAT DOES IT COST TO ELECTRIFY?

Annual Home Energy Costs	Pre- Electrification	Post- Electrification	Post- Electrification (w/ solar)	Post- Electrification (w/ solar +battery)
Electric Utility Bill	\$1,334	\$3,634	\$1,752	\$927
Natural Gas Utility Bill	\$1,268	\$0	\$0	\$0
Gasoline	\$1,811	\$0	\$0	\$0
Loan for Elect + Solar + Battery	\$0	\$750	\$1,439	\$2,144
Total	\$4,414	\$4,384	\$3,191	\$3,071

HOME BUDGET IMPACT OF NOT ELECTRIFYING



^{*} Annual energy costs for Electrified Home include utility electricity payments + loan payment on incremental capital investments for electrification. Escalation rate assumptions for electricity and natural gas rates in PG&E territory and gasoline prices are all taken from the California Public Utilities Commission Report entitled "Utility Costs and Affordability of the Grid of the Future: an Evaluation of Electric Costs, Rates and Equity Issues, Pursuant to P.U. Code Section 913.1", February 2021, p. 73.

ELECTRIFYING VS. BAU W/O SUBSIDIES

Key Variables 5.0% Interest rate 20 yrs Loan term 1.84 Natural gas rate multiplier from inputs b Starting Electric Rate E-1 \$0.24 per kWh Starting Electricity Rate (Average) EV2-A **New Electric Rate** Include solar? Solar system size 5.8 kW \$3.50 per Watt Solar system price Include battery? yes Battery system size 13.5 kWh \$880 per kWh Battery system price Battery capacity in reserve for outage 35% Upgrade to main panel req'd? no Permit streamlining for electrification? no 80% Permit cost reduction for electrification Federal tax credit applicable? no Federal tax credit rate 26% \$0 Incentive for main panel upgrade \$0 Incentive for subpanel upgrade \$0 Incentive for HP water heater \$0 Incentive for HP HVAC Incentive for HP dryer \$0 \$0 Incentive for electric cooking range \$0 Incentive for EV charger

^{*} Annual energy costs for Electrified Home include utility electricity payments + loan payment on incremental capital investments for electrification. Escalation rate assumptions for electricity and natural gas rates in PG&E territory and gasoline prices are all taken from the California Public Utilities Commission Report entitled "Utility Costs and Affordability of the Grid of the Future: an Evaluation of Electric Costs, Rates and Equity Issues, Pursuant to P.U. Code Section 913.1", February 2021, p. 73.

KEY FINDINGS

Electrification is cost neutral from day one to the end customer if:

- Financed
- Paired with roof-top solar
- Installation costs are competitive
- Amount financed is "premium" for electrification over gas appliances
- Panel saving "amp diet" concept is key to avoiding \$3,000+ electrical service upgrade
- · Capital costs for electric appliances are currently higher than equivalent gas appliances
- Solar is so inexpensive that it floats the economics of electrification
- Adding a battery pays for itself due to "duck-head" savings on PG&E's EV2-A rate

Environmental Quality Commission Regular Meeting Minutes March 17, 2021

WHAT CAN WE LEARN FROM ROOFTOP SOLAR?

- Installation costs will come down with volume
- Installer training is key to quality and cost
- Streamlining permits is key to reducing costs
- Stepping down subsidies by volume (vs. time) creates prompt demand, injects urgency and imposes discipline on installer market
- Financing will move electrification from something only wealthy people can afford to something most people can afford

KEY LEVERS FOR POLICY MAKERS AND UTILITIES

#		Who
1	Low interest financing	private sector, PCE, County?
2	On-bill financing	PG&E, PCE
3	Extra support for low-income households	?
4	Equipment rebates	PCE
5	Installer training	PCE, County
6	Public education	PCE, County, Cities
7	Permit streamlining	Cities, County, State
8	Favorable electricity rates	PCE, PG&E, CPUC
9	City ordinances	Cities

WHAT ELSE DO WE NEED?

- Low-interest financing solutions
- Financing solutions for customers with poor credit
- · On-bill utility financing
- · Education on using "amp diets" to avoid panel upgrades
- Permit streamlining and fee reduction
- More developed and competitive installer market

MYTHS

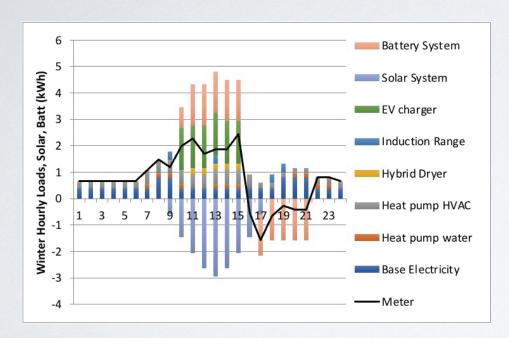
- Heat pumps don't work well in the cold
- My house will be cold if I electrify
- Everyone will need an expensive electrical panel upgrade to electrify
- Electrifying is only affordable for the wealthy
- Electrifying puts me at increased risk during power outages

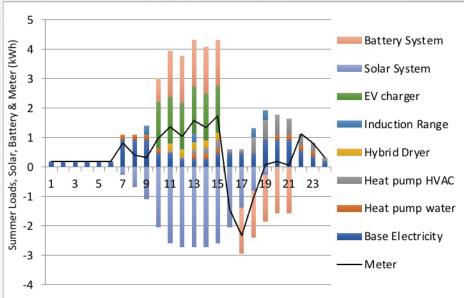
POTENTIAL POLICY PUSHBACK

Issue	Addressed with
Cost too high	On-bill financing, avoiding panel upgrades, rooftop solar, permit simplification, utility subsidies
Resiliency risk	On-site battery back-up system
Why us? We are a drop in the bucket	Even small cities can provide leadership for catalyzing change, e.g. Reach Codes
Too much effort - don't want to change	Utility-offered conscierge service, public education, installer market education and development

Environmental Quality Commission Regular Meeting Minutes March 17, 2021

Research and Modeling:


Josie Gaillard josie_gaillard@me.com


Tom Kabat tomgkabat@gmail.com

Environmental Quality Commission Regular Meeting Minutes March 17, 2021

APPENDIX

LOAD ANALYSIS

