320 SHERIDAN DRIVE CONSTRUCTION EMISSIONS AND HEALTH RISK ASSESSMENT

Menlo Park, California

April 3, 2024 Revised December 5, 2024

Prepared for:

John Shaw President Alliant Strategic Development 26050 Mureau Road, Suite 101 Calabasas, CA 91302

Prepared by:

Zachary Palm Jordyn Bauer

ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

I&R Project#: 24-017

Introduction

The purpose of this report is to address construction air quality and health risk impacts associated with the proposed multi-family development located at 320 Sheridan Drive in Menlo Park, California. Air quality impacts from this project would be associated with demolition and the construction of the new apartments. Air pollutants associated with construction of the project were estimated using appropriate computer models. In addition, the potential project health risks and the impacts of existing toxic air contaminant (TAC) sources affecting nearby sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).¹ For informational purposes, this report also provides analysis of TAC sources on future project residents.

Project Description

The 2.5-acre project site currently contains concrete pads leftover from its prior use as a school site. The project proposes to demolish the existing concrete pads to construct a three-story, 88-unit, 72,528 square-foot affordable housing building. A parking lot will also be constructed that will provide 120 parking spaces.

Setting

The project is located in San Mateo County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM₁₀), and fine particulate matter (PM_{2.5}).

Air Pollutants of Concern

High ozone concentrations in the air basin are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO_X). These precursor pollutants react under certain meteorological conditions to form ozone concentrations. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ambient ozone concentrations. The highest ozone concentrations in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone concentrations aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant in the air basin. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM₁₀) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM_{2.5}). Elevated concentrations of PM₁₀ and PM_{2.5} are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter concentrations aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

¹ Bay Area Air Quality Management District, 2022 CEQA Guidelines, April 2023

Toxic Air Contaminants

TACs are a broad class of compounds known to cause morbidity or mortality, often because they cause cancer. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure of TACs can result in adverse health effects, they are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about threequarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects from diesel exhaust exposure a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs. Health risks from TACs are estimated using the Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines, which were published in February of 2015 and incorporated in BAAQMD's current CEQA guidance.²

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, people over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, infants and small children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are the single- and multi-family residences adjacent to the southeast and northwest. Additionally, there would be children at the Belle Haven Home Daycare located 800 feet to the east. This project would introduce new sensitive receptors (i.e., residents) to the area.

Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

² OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.³ The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program has been implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses has been used to develop emission reduction activities in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. Seven areas have been identified by BAAQMD as impacted communities. They include Eastern San Francisco, Richmond/San Pablo, Western Alameda, San José, Vallejo, Concord, and Pittsburgh/Antioch. The project site is not within the CARE area.

Overburdened communities are areas located (i) within a census tract identified by the California Communities Environmental Health Screening Tool (CalEnviroScreen), Version 4.0 implemented by OEHHA, as having an overall score at or above the 70th percentile, or (ii) within 1,000 feet of any such census tract.⁴ The BAAQMD has identified several overburdened areas within its boundaries. The project site is not within an overburdened area as the Project site is scored at the 5th percentile on CalEnviroScreen.⁵ The project site also is not within 1,000 feet of a census tract that scores at or above the 70th percentile.

BAAQMD CEQA Air Quality Guidelines

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA. In 2023, the BAAQMD revised the *California Environmental Quality Act (CEQA) Air Quality Guidelines* that include significance thresholds to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The current BAAQMD guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They include

⁴ See BAAQMD: <u>https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-</u>

³ See BAAQMD: <u>https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</u>.

amendments/documents/20210722_01_appendixd_mapsofoverburdenedcommunities-pdf.pdf?la=en. ⁵ OEHAA, CalEnviroScreen 4.0 Maps

https://experience.arcgis.com/experience/11d2f52282a54ceebcac7428e6184203/page/CalEnviroScreen-4_0/

assessment methodologies for criteria air pollutants and air toxics emissions as shown in Table $1.^{6}$ Air quality impacts and health risks are considered potentially significant if they exceed these thresholds.

Criteria Air Pollutant	Construction Thresholds						
Criteria Ali i onutant		Average Daily	Emissions (lbs./day)			
ROG	[54					
NO _x			54				
PM ₁₀		82 ((Exhaust)				
PM _{2.5}		54 ((Exhaust)				
СО	Not Applicable						
Fugitive Dust (PM ₁₀ /PM _{2.5})	Best Management Practices (BMPs)*						
Health Risks and Hazards	Single Sources/ Individual Project		Combined Sources (Cumulative from all sources within 1000-foo zone of influence)				
Excess Cancer Risk	>10 in a million	OR	>100 in a million	OR			
Hazard Index	>1.0	Compliance with Qualified	>10.0	Compliance with Qualified			
Incremental annual PM _{2.5}	>0.3 µg/m ³	Community Risk Reduction Plan	>0.8 µg/m ³	Community Risk Reduction Plan			
Note: ROG = reactive organic with an aerodynamic diameter an aerodynamic diameter of 2. * BAAQMD strongly recomm construction projects are locat sensitive land uses.	c gases, NOx = nitro of 10 micrometers .5 μ m or less. nends implementing red near sensitive cc	by the second s	course particulate mat = fine particulate matte dust management prac g schools, residential a	ter or particulates or or particulates with ortices especially when reas, or other			

 Table 1.
 BAAQMD CEQA Significance Thresholds

Source: Bay Area Air Quality Management District, 2022

The BAAQMD recommends all projects include a "basic" set of best management practices (BMPs) to manage fugitive dust and consider impacts from dust (i.e., fugitive PM₁₀ and PM_{2.5}) to be less than significant if BMPs are implemented (listed below). BAAQMD strongly encourages enhanced BMPs for construction sites near schools, residential areas, other sensitive land uses, or if air quality impacts were found to be significant.

City of Menlo Park General Plan

The City of Menlo Park General Plan, adopted November 29, 2016, includes goals, policies, and programs to reduce exposure of the City's sensitive population to exposure of air pollution and toxic air contaminants or TACs. The following goals, policies, and programs are applicable to the proposed project and this assessment:

⁶ Bay Area Air Quality Management District, 2023. 2022 CEQA Guidelines. April.

Land Use Element	
Goal LU-7	Promote the implementation and maintenance of sustainable development, facilities, and services to meet the needs of Menlo Park's residents, businesses, workers, and visitors.
Applicable Policies –	Land Use Element

Policy LU-7.9 **Green Building.** Support sustainability and green building best practices through the orientation, design, and placement of buildings and facilities to optimize their energy efficiency in preparation of State zero-net energy requirements for residential construction in 2020 and commercial construction in 2030.

Applicable Programs – Land Use Element

- Policy LU-7.A Green Building Operation and Maintenance. Employ green building and operation and maintenance best practices, including increased energy efficiency, use of renewable energy and reclaimed water, and install drought-tolerant landscaping for all projects.
- Policy LU-7.D **Performance Standards**. Establish performance standards in the Zoning Ordinance that requires new development to employ environmentally friendly technology and design to conserve energy and water and minimize the generation of indoor and outdoor pollutants.
- Policy LU-7.E **Greenhouse Gas Emissions**. Develop a Greenhouse Gas (GHG) standard for development projects that would help reduce communitywide GHG emissions to meet City and Statewide reduction goals.

Circulation Element

- Goal CIRC-3 Increase mobility options to reduce traffic congestion, greenhouse gas emissions, and commute travel time.
- Goal CIRC-5 Support local and regional transit that is efficient, frequent, convenient, and safe.
- Goal CIRC-6 Provide a range of transportation choices for the Menlo Park community.
- Goal CIRC-7 Utilize innovative strategies to provide efficient and adequate vehicle parking.

Applicable Policies – Circulation Element

Policy CIRC-3.1 **Vehicle-Miles Traveled**. Support development and transportation improvements that help reduce per service population (or other efficiency metric) vehicle miles traveled.

- Policy CIRC-5.7 **New Development.** Ensure that new nonresidential, mixed-use, and multiple-dwelling residential development provides associated needed transit service, improvements and amenities in proportion with demand attributable to the type and scale of the proposed development.
- Policy CIRC-7.1 **Parking and New Development.** Ensure new development provides appropriate parking ratios, including application of appropriate minimum and/or maximum ratios, unbundling, shared parking, electric car charging, car sharing, and Green Trip Certified strategies to accommodate residents, employees, customers and visitors.

Applicable Programs – Circulation Element

Program CIRC-6.C **Transportation Impact Fee.** Require new and expanded development to pay a transportation impact fee, and update the fee periodically to ensure that development is paying its fair share of circulation system improvement costs for all modes of transportation.

Open Space/Conservation Element

- Goal OSC-4 Promote sustainability and climate action planning. Promote a sustainable energy supply and implement the City's Climate Action Plan to reduce greenhouse gas emissions and improve the sustainability of actions by City government, residents, and businesses in Menlo Park. This includes promoting land use patterns that reduce the number and length of motor vehicle trips, and encouraging recycling, reduction and reuse programs.
- Goal OSC-5 Ensure healthy air and water quality. Enhance and preserve air quality in accord with State and regional standards, and encourage the coordination of total water quality management including both supply and wastewater treatment.

Applicable Policies – Open Space/Conservation Element

- Policy OSC-4.2 **Sustainable Building.** Promote and/or establish environmentally sustainable building practices or standards in new development that would conserve water and energy, prevent stormwater pollution, reduce landfilled waste, and reduce fossil fuel consumption from transportation and energy activities.
- Policy OSC-4.3 **Renewable Energy**. Promote the installation of renewable energy technology, such as, on residences and businesses through education, social marketing methods, establishing standards and/or providing incentives.
- Policy OSC-4.5 Energy Standards in Residential and Commercial Construction. Encourage projects to achieve a high level of energy conservation

exceeding standards set forth in the California Energy Code for Residential and Commercial development.

Policy OSC-5.1 Air and Water Quality Standards. Continue to apply standards and policies established by the Bay Area Air Quality Management District (BAAQMD), San Mateo Countywide Water Pollution Prevention Program (SMCWPPP), and City of Menlo Park Climate Action Plan through the California Environmental Quality Act (CEQA) process and other means as applicable.

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2022 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size were input to CalEEMod. The CalEEMod model output along with construction inputs are included in *Attachment 1*.

CalEEMod Modeling

Land Use Inputs

The proposed project land uses were entered into CalEEMod as described in Table 2.

Project Land Uses	Size	Units	Square Feet (sf)	Acreage
Apartments Mid Rise	88	Dwelling Unit	72,528	2.50
Parking Lot	120	Parking Spaces	-	2.30

Table 2.Summary of Project Land Use Inputs

Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario, including the equipment quantities, average hours per day, total number of workdays, and schedule, were based on the start date and equipment specifications provided by the project applicant and CalEEMod defaults (included in *Attachment 1*). The unmitigated CalEEMod scenario included Tier 4 engines for construction equipment as the applicant has stated their general contractor is committing to using equipment that is Tier 4 or better⁷. According to the project applicant, the earliest possible start date would be June 2025, and based on CalEEMod defaults the project would be built out over a period of approximately 13 months, or 277 construction workdays. The earliest year of full operation was assumed to be 2027.

⁷ NextPhase Construction, Inc., File: 320 Sheridan – Menlo Park – Tier 4 Letter 032524.pdf

Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The trafficrelated emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the amount of demolition material to be exported, soil imported and/or exported to the site, and the amount of concrete and asphalt truck trips to and from the site. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. Daily haul trips for demolition and grading were developed by CalEEMod using the provided demolition and soil import/export volumes. The number of total concrete/asphalt round haul trips were provided for the project and converted to daily one-way trips, assuming two trips per delivery. These values are shown in the project construction equipment worksheet included in *Attachment 1*.

Summary of Computed Construction Period Emissions

Average daily construction emissions were estimated for the total duration of the project (277 days). Table 3 shows the unmitigated annualized average daily construction emissions of ROG, NO_X, PM₁₀ exhaust, and PM_{2.5} exhaust during construction of the project. As indicated in Table 3, predicted unmitigated annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction.

Year	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust					
Construction Emissions Per Year (Tons)									
2025-2026	0.57	1.30	0.02	0.02					
Average Daily Construction Emissions Per Year (pounds/day)									
2025-2026 (277 construction workdays)	4.09	9.40	0.15	0.14					
BAAQMD Thresholds (pounds per day)	54 lbs./day	54 lbs./day	82 lbs./day	54 lbs./day					
Exceed Threshold?	No	No	No	No					

Table 3.Construction Period Emissions - Unmitigated

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM₁₀ and PM_{2.5}. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. General Plan Policy OSC-5.1, Air and Water Quality Standards, requires projects to apply standards and policies established by BAAQMD. The BAAQMD recommends all projects include a "basic" set of best management practices (BMPs) to manage fugitive dust and consider impacts from dust (i.e., fugitive PM₁₀ and PM_{2.5}) to be less than significant when BMPs are implemented. The BMPs are:

- 1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.

- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as practicable. Building pads shall be laid as soon as practicable after grading unless seeding or soil binders are used.
- 6. All excavation, grading, and/or demolition activities shall be suspended when average wind speeds exceed 20 mph.
- 7. All trucks and equipment, including their tires, shall be washed off prior to leaving the site.
- 8. Unpaved roads providing access to site located 100 feet of further from a paved road shall be treated with a 6- to 12-inch layer of compacted layer of wood chips, mulch, or gravel.
- 9. Publicly visible signs shall be posted with the telephone number and name of the person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's General Air Pollution Complaints number shall be visible to ensure compliance with applicable regulations.

The City requires new development to implement BAAQMD's basic BMPs through a standard condition of approval, consistent with General Plan Goal OSC-5 and Policy OSC-5.1. The project would be subject to this standard condition of approval and would have a less than significant impact on air quality due to the emission of criteria air pollutants during construct.

Construction Health Risk Impacts

Project impacts related to increased health risk can occur by generating emissions of TACs and air pollutants. Temporary project construction activity would generate emissions of DPM from equipment and trucks and also generate dust on a temporary basis that could affect nearby sensitive receptors. Additionally, there are existing sources of TACs and localized air pollutants in the vicinity of the project. The cumulative impact of the Project and existing TAC sources was assessed.

Health risk impacts are addressed by predicting increased lifetime cancer risk, the increase in annual PM_{2.5} concentrations, and computing the Hazard Index (HI) for non-cancer health risks. Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust emissions pose health risks for sensitive receptors such as surrounding residents. The primary health risk impact issues associated with construction emissions are cancer risk and exposure to PM_{2.5}. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive

receptors from construction emissions of DPM and PM_{2.5}.⁸ This assessment included dispersion modeling to predict the offsite and onsite concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated.

Modeled Sensitive Receptors

Receptors for this assessment included locations where sensitive populations would be present for extended periods of time (i.e., chronic exposures). This includes the nearby existing residences surrounding the project site and the daycare as shown in Figure 1. Residential receptors are assumed to include all receptor groups (i.e., third trimester, infants, children, and adults) with almost continuous exposure to project emissions. Health risks were also computed for child receptors at the daycare. While there are additional sensitive receptors within 1,000 feet of the project site, the receptors chosen are adequate to identify maximum impacts from the project.

Construction Emissions

The CalEEMod model provided total annual PM_{10} exhaust emissions (assumed to be DPM) for the off-road construction equipment mix submitted by the applicant and for exhaust emissions from on-road vehicles, with total emissions from all construction stages being 0.05 tons (104 pounds). The on-road vehicle emissions are a result of haul truck travel on-site during demolition and grading activities, worker travel on-site, and vendor travel on-site during construction. A trip length of one mile was used to represent vehicle travel while at or near the construction site. Fugitive PM_{2.5} dust emissions were calculated by CalEEMod as 0.01 tons (24 pounds) for the overall construction period.

Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict DPM and PM_{2.5} concentrations at sensitive receptors (i.e., residences) in the vicinity of the project construction area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of these types of emission activities for CEQA projects.⁹ Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM_{2.5} dust emissions.

Construction Sources

To represent the construction equipment exhaust emissions, an area source was used with an emission release height of 20 feet (6 meters).¹⁰ The release height incorporates both the physical release height from the construction equipment (i.e., the height of the exhaust pipe) and plume rise after it leaves the exhaust pipe. Plume rise is due to both the high temperature of the exhaust and the high velocity of the exhaust gas. It should be noted that when modeling an area source,

⁸ DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

⁹ BAAQMD, 2023, Appendix E of the 2022 BAAQMD CEQA Guidelines. April.

¹⁰ California Air Resource Board, 2007. *Proposed Regulation for In-Use Off-Road Diesel Vehicles, Appendix D: Health Risk Methodology*. April. Web: https://ww3.arb.ca.gov/regact/2007/ordiesl07/ordiesl07.htm

plume rise is not calculated by the AERMOD dispersion model as it would do for a point source (exhaust stack). Therefore, the release height from an area source used to represent emissions from sources with plume rise, such as construction equipment, was based on the height the exhaust plume is expected to achieve, not just the height of the top of the exhaust pipe.

For modeling fugitive PM_{2.5} emissions, an area source with a near-ground level release height of 7 feet (2 meters) was used. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site.

AERMOD Inputs and Meteorological Data

The modeling used a five-year data set (2011 - 2015) of hourly meteorological data from the San Carlos Airport prepared for use with the AERMOD model by BAAQMD. Construction emissions were modeled as occurring Monday through Friday between 8:00 a.m. to 5:00 p.m., when the majority of construction is expected to occur. Annual DPM and PM_{2.5} concentrations from construction activities during the 2025-2026 period were calculated at nearby sensitive receptors using the model. Receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) were used to represent the breathing heights on the first and second floors of nearby single and multi-family residences.¹¹ A receptor height of 3 feet (1 meter) was used to represent the breathing height of children at the nearby Belle Haven Home Daycare.

Summary of Construction Health Risk Impacts

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with the BAAQMD CEQA guidance for age sensitivity factors and exposure parameters. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Infant, child, and adult exposures were assumed to occur at all residences during the entire construction period. Third trimester, infant, child, and adult exposures were assumed to occur at all residences during the entire construction period. The entire construction period, while child exposures were assumed at the daycare.

Non-cancer health hazards and maximum $PM_{2.5}$ concentrations were also calculated. The maximum modeled annual $PM_{2.5}$ concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI value was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation referce exposure level of 5 μ g/m³.

The modeled maximum annual DPM and $PM_{2.5}$ concentrations were identified at nearby sensitive receptors (as shown in Figure 1) to find the maximally exposed individuals (MEI). Results of this assessment indicated that the construction MEI was located southeast of the

¹¹ BAAQMD, 2023, Appendix E of the 2022 BAAQMD CEQA Guidelines. April.

project site on the first floor (5 feet above the ground) of a multi-family residence. Table 4 summarizes the maximum cancer risks, PM_{2.5} concentrations, and HI for project related construction activities affecting the construction MEIs. *Attachment 2* to this report includes the emission calculations used for the construction modeling and the cancer risk calculations.

Construction risk impacts are shown in Table 4. The maximum cancer risks from construction activities at the construction MEI would be below the single-source significance threshold. The annual PM_{2.5} concentration and HI from construction activities would be below the single-source significance thresholds.

Additionally, modeling was conducted to predict the cancer risks, non-cancer health hazards, and maximum PM_{2.5} concentrations associated with construction activities at the nearby Belle Haven Home Daycare. The maximum increased cancer risks were adjusted using infant exposure parameters. The cancer risk, PM_{2.5} concentration, and HI did not exceed their respective BAAQMD single-source significance thresholds, as shown in Table 4.

Tuble 1. Construction fusik impacts at the off Site Willi									
Source	Cancer Risk (per million)	Annual PM _{2.5} (μg/m ³)	Hazard Index						
Project Impact									
Project Construction	8.00 (infant)	0.06	0.01						
BAAQMD Single-Source Threshold	>10.0	>0.3	>1.0						
Exceed Threshold?	No	No	No						
Belle Haven Home Daycare Impacts									
Project Construction	2.14 (infant)	< 0.01	< 0.01						
BAAQMD Single-Source Threshold	>10.0	>0.3	>1.0						
Exceed Threshold?	No	No	No						

Table 4.Construction Risk Impacts at the Off-Site MEI*

*Note: The project's unmitigated scenario includes Tier 4 Interim equipment based on information provided by the applicant's general contractor, as mentioned above.

Figure 1. Locations of Project Construction Site, Off-Site Sensitive Receptors, and Maximum TAC Impacts (MEI)

Cumulative Health Risks of all TAC Sources at the Off-Site MEI

Cumulative health risk assessments look at all substantial sources of TACs located within 1,000 feet of a project site (i.e., influence area) that can affect sensitive receptors. These sources include rail lines, highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area using BAAQMD's geographic information systems (GIS) screening tools indicated that one roadway (U.S. Highway 101) and three stationary sources within the 1,000-foot influence area could have cumulative health risk impacts at the MEI. Figure 2 shows the locations of the sources affecting the MEI within the influence area. Health risk impacts from these sources upon the MEI are reported in Table 5. Details of the cumulative screening and health risk calculations are included in *Attachment 3*.

Highways - U.S. 101

The project MEIs are located near U.S. 101. A refined analysis of the impacts of TACs and $PM_{2.5}$ to the MEI receptor is necessary to evaluate potential cancer risks and $PM_{2.5}$ concentrations from U.S. 101. A review of the traffic information reported by Caltrans indicates that U.S. 101 traffic includes 154,000 vehicles per day (based on an annual average)¹² that are about 4.50 percent trucks, of which 1.9 percent are considered diesel heavy duty trucks and 2.6 percent are medium duty trucks.¹³

Emission Rates

This analysis involved the development of DPM, organic TACs, and PM_{2.5} emissions for traffic on the U.S. 101 using the Caltrans version of the EMFAC2021 emissions model, known as CT-EMFAC2021. CT-EMFAC2021 provides emission factors for mobile source criteria pollutants and TACs, including DPM. Emission processes modeled include running exhaust for DPM, PM_{2.5} and total organic compounds (e.g., TOG), running evaporative losses for TOG, tire and brake wear, and fugitive road dust for PM_{2.5}. All PM_{2.5} emissions from all vehicles were used, rather than just the PM_{2.5} fraction from diesel powered vehicles, because all vehicle types (i.e.,

¹² Caltrans. 2021. 2021 Traffic Volumes California State Highways.

¹³ Caltrans. 2021. 2021 Annual Average Daily Truck Traffic on the California State Highway System.

gasoline and diesel powered) produce $PM_{2.5}$. Additionally, $PM_{2.5}$ emissions from vehicle tire and brake wear and from re-entrained roadway dust were included. DPM emissions are projected to decrease in the future and are reflected in the CT-EMFAC2021 emissions data. Inputs to the model include region (i.e., San Mateo County), type of road (i.e., freeway), Caltrans estimated local truck mix on U.S. 101 (4.50 percent)¹⁴, traffic mix assigned by CT-EMFAC2021 for the county, year of analysis (2025), and season (annual).

In order to estimate TAC and PM_{2.5} emissions over the 30-year exposure period used for calculating the increased cancer risks for sensitive receptors at the construction MEI, the CT-EMFAC2021 model was used to develop vehicle emission factors for the year 2025. Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CT-EMFAC2021. Year 2025 emissions were conservatively assumed as being representative of future conditions over the time period that cancer risks are evaluated.

The traffic information reported by Caltrans for U.S. 101 was increased 1 percent per year to 160,159 vehicles per day (based on an annual average) that includes about 4.5 percent trucks, of which 1.9 percent are considered diesel heavy duty trucks and 2.6 percent are medium duty trucks.¹⁵ Hourly traffic distributions specific to these segments of U.S. 101 were obtained from Caltrans Performance Measurement System (PeMS). PeMS data is collected in real-time from nearly 40,000 individual detectors spanning the freeway system across all major metropolitan areas of California.¹⁶ The fraction of traffic volume each hour was calculated and applied to the 2025 average daily traffic volumes calculation to estimate hourly traffic emission rates for U.S. 101.

Based on traffic data from the Caltrans PeMS, traffic speeds during the daytime and nighttime periods were identified. For northbound traffic on U.S. 101, the following was assumed for all vehicles:

- 70 mph From 12:00 a.m. until 6:00 a.m. and 8:00 p.m. until 12:00 a.m.
- 65 mph From 6:00 a.m. until 8:00 a.m. and 9:00 a.m. until 8:00 p.m.
- 60 mph From 8:00 a.m. until 9:00 a.m.

For southbound traffic on U.S. 101, the following was assumed for all vehicles:

- 70 mph From 12:00 a.m. until 6:00 a.m. and 8:00 p.m. until 12:00 a.m.
- 65 mph From 6:00 a.m. until 7:00 a.m., 11:00 a.m. until 4:00 p.m., and 6:00 p.m. until 8:00 p.m.
- 60 mph From 7:00 a.m. until 8:00 a.m., 10:00 a.m. until 11:00 a.m., and 4:00 p.m. until 6:00 p.m.

¹⁴ Caltrans. 2024. 2021 Annual Average Daily Truck Traffic on the California State Highways. Web: https://dot.ca.gov/programs/traffic-operations/census

¹⁵ Caltrans. 2024. 2021 Annual Average Daily Truck Traffic on the California State Highway System. Web: https://dot.ca.gov/programs/traffic-operations/census.

¹⁶ https://dot.ca.gov/programs/traffic-operations/mpr/pems-source

• 55 mph – From 8:00 a.m. until 10:00 a.m.

Dispersion Modeling

Dispersion modeling of TAC and PM_{2.5} emissions was conducted using the EPA AERMOD air quality dispersion model, which is recommended by the BAAQMD for this type of analysis.¹⁷ TAC and PM_{2.5} emissions from traffic on U.S. 101 within 1,000 feet of the project site were evaluated. Vehicle traffic on the roadways was modeled using a series of area sources along a line (line area sources); with line segments used for opposing travel directions on the roadway. The same meteorological data and off-site sensitive receptor MEI locations from the previous project impact dispersion modeling were used in the roadway modeling. Other inputs to the model included road geometry, hourly traffic emissions, and receptor locations and heights. Annual TAC and PM_{2.5} concentrations from traffic on the roadways were calculated using the model. Concentrations were calculated at the project MEI with a receptor height of 5 feet (1.5 meters) to represent the breathing height at the MEI receptor.

Computed Cancer and Non-Cancer Health Impacts

Maximum increased lifetime cancer risks and annual PM_{2.5} concentrations for the receptors were computed using modeled TAC and PM_{2.5} concentrations and BAAQMD methods and exposure parameters. The traffic-related cancer risk, PM_{2.5} concentration, and HI impacts on the project MEI are shown in Table 5. Figure 2 shows the roadway links used for the modeling and receptor locations where concentrations were calculated. Details of the emission calculations, dispersion modeling, and cancer risk calculations for the receptors with the maximum cancer risk from U.S. 101 traffic are provided in *Attachment 3*.

BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Permitted Stationary Sources 2021* GIS map website.¹⁸ This mapping tool identifies the location of nearby stationary sources and their estimated risk and hazard impacts, based on emissions and adjustments to account for OEHHA's risk guidance. Three sources were identified using this tool, all diesel generators. The BAAQMD GIS website provided screening risks and hazards for the remaining sources. Therefore, a stationary source information request was not required to be submitted to BAAQMD.

The screening risk and hazard levels provided by BAAQMD for the stationary source was adjusted for distance using BAAQMD's *Distance Adjustment Multiplier Tool for Backup Diesel Generator*. Health risk impacts from the stationary sources upon the MEIs are reported in Table 5.

¹⁷ BAAQMD. *Recommended Methods for Screening and Modeling Local Risks and Hazards*. May 2012 ¹⁸ BAAQMD, Web:

https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=845658c19eae4594b9f4b805fb9d89a3

Summary of Cumulative Health Risk Impacts

Table 5 reports both the project and cumulative health risk impacts. The cumulative annual cancer risk, maximum $PM_{2.5}$ concentration and HI values would not exceed the BAAQMD's cumulative source health risk thresholds

Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index				
Project Impacts							
Project Construction	8.00 (infant)	0.06	0.01				
BAAQMD Single-Source Threshold	>10.0	>0.3	>1.0				
Exceed Threshold?	No	No	No				
Cumulative Impa	ets						
U.S. 101, ADT 160,159	11.22	0.33	< 0.01				
CALTRANS (Facility # 19890, Generator), MEI at 50 feet	0.15	-	-				
Meta Platforms Inc-MPK 28-29 (Facility #23192, Generator) MEI at 1000+	0.39	<0.01	< 0.01				
Facebook Inc. (Facility #200438, Generator) MEI at	0.19	< 0.01	< 0.01				
Cumulative Total	19.95	< 0.41	< 0.04				
BAAQMD Cumulative Source Threshold	>100	>0.8	>10.0				
Exceed Threshold?	No	No	No				

 Table 5.
 Impacts from Combined Sources at Construction MEI

Non-CEQA: On-site Health Risk Assessment of TAC Sources - New Sensitive Receptors

A health risk assessment was completed to assess the effect that existing TAC sources would have on the new sensitive receptors (i.e., residents) introduced by the project. The same TAC sources identified above were used in this assessment.¹⁹ BAAQMD's recommended thresholds for health risks and hazards, shown in Table 1, are used to evaluate on-site exposure. Figure 3 shows the on-site sensitive receptors in relation to the nearby TAC sources. Results are listed in Table 6. *Attachment 3* includes the dispersion modeling and risk calculations for TAC source impacts upon the proposed on-site sensitive receptors.

Highways – U.S. 101

The highway analysis for the new project residents was conducted in the same manner as described above for the off-site MEI. However, the year 2027 (operational year) emission factors were conservatively assumed as being representative of future conditions, instead of 2025 (construction year). An analysis based on 2027 resulted in an increased ADT on U.S. 101 of 163,239 vehicles. The project set of receptors were placed throughout the project residential

¹⁹ We note that to the extent this analysis considers *existing* air quality issues in relation to the impact on *future residents* of the Project, it does so for informational purposes only pursuant to the judicial decisions in *CBIA v. BAAQMD* (2015) 62 Cal.4th 369, 386 and *Ballona Wetlands Land Trust v. City of Los Angeles* (2011) 201 Cal.App.4th 455, 473, which confirm that the impacts of the environment on a project are excluded from CEQA unless the project itself "exacerbates" such impacts.

areas and were spaced every 23 feet (7 meters). Highway impacts were modeled at receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) representing sensitive receptors on the first and second floors of the building. The portions of U.S. 101 included in the modeling are shown in Figure 3 along with the project site and receptor locations where impacts were modeled.

Maximum increased cancer risks were calculated for the residents at the project site using the maximum modeled TAC concentrations. A 30-year exposure period was used in calculating cancer risks assuming the residents would include third trimester pregnancy and infants/children and were assumed to be in the new housing area for 24 hours per day for 350 days per year. The highest impacts from U.S. 101 occurred at a receptor on the first floor at the northeastern corner of the project site. Cancer risks associated with the highway are greatest closest to the highway and decrease with distance from the highway. The highway health risk impacts at the project site are shown in Table 6. Details of the highway emission calculations, dispersion modeling, and cancer risk calculations are contained in *Attachment 3*.

Stationary Sources

The stationary source screening analysis of the source for the new project sensitive receptors was conducted in the same manner as described above for the construction MEI. Table 6 includes the health risk assessment results associated with stationary sources.

Summary of Cumulative Health Risks at the Project Site

Health risks from the existing TAC sources upon the project site are reported in Table 6. The risks from individual TAC sources are compared against the BAAQMD single-source thresholds. The risks from all the sources are then combined and compared against the BAAQMD cumulative-source thresholds. As shown, one existing source of TAC emissions, U.S. 101, exceeds the BAAQMD single-source thresholds for cancer risk and annual PM_{2.5} concentration. However, none of the BAAQMD cumulative-source thresholds are exceeded.

Table 6. Impacts from Cumulative Sources to Froject Site Receptors								
Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index					
U.S. 101, ADT 163,239	20.52	0.75	< 0.01					
CALTRANS (Facility #19890, Generator), Project Site at 50 feet	0.15	-	-					
Meta Platforms Inc-MPK 28-29 (Facility #23192, Generator) Project Site at 745 feet	0.68	<0.01	< 0.01					
Facebook Inc. (Facility #200438, Generator) Project Site at 950 feet	0.19	<0.01	< 0.01					
BAAQMD Single-Source Threshold	>10	>0.3	>1.0					
Exceed Threshold?	Yes	Yes	No					
Cumulative Total	21.54	< 0.77	< 0.03					
BAAQMD Cumulative Source Threshold	>100	>0.8	>10.0					
Exceed Threshold?	No	No	No					

Table 6	Imposts from	Cumulativa	Samaan to	Duciant	Site Decontors
I able 0.	Impacts from	Cumulative	Sources to	rroject	Site Receptors

Figure 3. Project Site, Nearby Sources, and On-Site Maximum TAC Impact

Condition of Approval (COA) AQ-1: Install MERV13 filtration in all residential buildings.

Filtration in ventilation systems at the project site would reduce the level of harmful pollutants to acceptable levels. The significant exposure for new project receptors is judged by two effects: (1) increased cancer risk, and (2) annual PM_{2.5} concentration. Project exposure to cancer risk and annual PM_{2.5} concentrations from U.S. 101 are above the BAAQMD single-source significance thresholds, although this is not a CEQA impact. The cancer risks and annual PM_{2.5} concentration from U.S. 101 are based on exposure to diesel particulate matter and PM_{2.5} resulting from emissions attributable to truck and auto exhaust, the wearing of brakes and tires and re-entrainment of roadway dust from vehicles traveling over pavement. Reducing particulate matter exposure would reduce both annual PM_{2.5} exposures and cancer risk.

The project shall include the following measures to minimize long-term increased cancer risk and annual PM_{2.5} exposure for new project occupants:

1. Install air filtration for all residential buildings. Air filtration devices shall be rated MERV13 or higher. To ensure adequate health protection to sensitive receptors (i.e., residents), this ventilation system, whether mechanical or passive, shall filter all fresh air that would be circulated into the dwelling units.

- 2. The ventilation system shall be designed to keep the building at positive pressure when doors and windows are closed to reduce the intrusion of unfiltered outside air into the building.
- 3. As part of implementing this measure, an ongoing maintenance plan for the buildings' heating, ventilation, and air conditioning (HVAC) air filtration system shall be required that includes regular filter replacement.
- 4. Ensure that the use agreement and other property documents: (1) require cleaning, maintenance, and monitoring of the affected buildings for air flow leaks, (2) include assurance that new owners or tenants are provided information on the ventilation system, and (3) include provisions that fees associated with owning or leasing a unit(s) in the building include funds for cleaning, maintenance, monitoring, and replacements of the filters, as needed.

Consistent with Housing Element EIR mitigation measure AQ-3, the above features shall be incorporated into the site development plan as a component of the proposed project. The air intake design and MERV filter requirements also shall be noted and/or reflected on all building plans submitted to the City and shall be verified by the City's Building Division and/or Planning Division.

Effectiveness of COA AQ-1

A properly installed and operated ventilation system with MERV13 would achieve an 80-percent reduction for small particulates.²⁰ The overall effectiveness calculations take into account the amount of time spent outdoors and away from home. Assuming that the filtration system is 80-percent effective and the individual is being exposed to 21 hours of indoor filtered air and three hours of outdoor unfiltered air, then the overall effectiveness of a MERV13 filtration system would be about 70-percent for DPM and PM_{2.5} exposure. For U.S. 101, this would reduce the cancer risk to 8.76 per million and the maximum annual PM_{2.5} concentration to 0.22 μ g/m³. With this condition of approval, impacts from U.S. 101 would be below the BAAQMD single-source thresholds.

²⁰ Bay Area Air Quality Management District (2016). Appendix B: Best Practices to Reduce Exposure to Local Air Pollution, *Planning Healthy Places A Guidebook for Addressing Local Sources of Air Pollutants in Community Planning* (p. 38). <u>http://www.baaqmd.gov/~/media/files/planning-and-research/planning-healthy-places/php_may20_2016-pdf.pdf?la=en</u>

Supporting Documentation

Attachment 1 includes the CalEEMod output for project construction emissions. Also included are any modeling assumptions.

Attachment 2 is the construction health risk assessment. This includes the summary of the dispersion modeling and the cancer risk calculations for construction. AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format.

Attachment 3 includes the cumulative health screening and modeling results from sources affecting the construction MEI and project site receptors.

Attachment 1: CalEEMod Modeling Inputs and Outputs

Air Quality/Noise Construction Information Data Request								
Project N	ame: See Equipment Type TAB for type	320 Sheric	dan Drive, Menlo	Park DEFAULT	rs			Complete ALL Portions in Yellow
	Drain at Size		Duralling Units	25	total projec	t aanaa diatuu	had	
	Project Size		Dwenning Units	2.5	total projec	acres distu	bea	
		72,528	s.f. residential					
			s.f. retail					Project include on-site GENERATOR OR FIRE PLIMP during project OPERATION
			s.f. office/commercial					(not construction)? Y/N?
			s.f. other, specify:					IF YES (if BOTH separate values)>
		-	s f. parking garage		spaces			Kilowatts/Horsepower:
			of parking lat	420	spaces	*****		- Fuel Type:
			s.i. parking lot	120	spaces			
	Construction Days (i.e, M-F)		to		•			Location in project (Plans Desired if Available):
	Construction Hours		am to		pm			
					Total	Δνα	нр	DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT
Quantity	Description	HP	Load Factor	Hours/day	Work Days	Hours per day	Annual Hours	Comments
	Demolition	Start Date:	6/2/2025	Total phase:	20)		Overall Import/Export Volumes
1	Concrete/Industrial Saws	End Date: 81	6/30/2025 0.73	8	20) A	9461	Demolition Volume
4	Excavators	158	0.38		20	0	15000	Square footage of buildings to be demolished
3	Tractors/Loaders/Backhoes	247 97	0.4	8	20) 8) 8	15808	(or total tons to be nauled)
	Other Equipment?							Any pavement demolished and hauled? 1,100 cubic yards
	Site Preparation	Start Date:	7/1/2025		3	8		
1	Graders	187	0.41	8	3	8 8	1840)
1	Rubber Tired Dozers Tractors/Loaders/Backhoes	247 97	0.4	8	3	8 8	2371	
	Other Equipment?							
	Grading / Excavation	Start Date:	7/6/2025	Total phase:	6	5		
	Freedom	End Date:	7/14/2025					Soil Hauling Volume
1	Graders	158	0.38	8	6	0 8 8	3680	Import volume = <u>1,102</u> cubic yards?
1	Rubber Tired Dozers	247 81	0.4	8	6	8	4742	
2	Tractors/Loaders/Backhoes	97	0.37	7	6	5 7	3015	
	Other Equipment?							
	Trenching/Foundation	Start Date:	7/15/2025	Total phase:	6	5		
1	Tractor/Loader/Backhoe	97	0.37	8	6	8	1723	3
1	Excavators Other Equipment?	158	0.38	8	6	8	2882	2
				1991 - 1 - 1				American Translady AMT Tetal Down d Telan
	Building - Exterior	End Date:	5/26/2026	l otal phase:	220)		
1	Cranes	231	0.29	6	220	6	88427	Electric? (Y/N) Otherwise assumed diesel
1	Generator Sets	84	0.2	8	220	8	109402	Or temporary line power? (Y/N)
1	Tractors/Loaders/Backhoes Welders	97 46	0.37	6	220	0 6 0 8	47375	
	Other Equipment?							
Building - Int	erior/Architectural Coating	Start Date:	5/27/2026	Total phase:	10)		
1	Air Compressors	End Date: 78	0.48	6	10	6	2246	3
	Aerial Lift Other Equipment?	62	0.31			0	0	
	Dender	Otarit E. J		Tatalahar				
	Paving	Start Date: Start Date:	6/10/2026	i otal phase:	10	<u>,</u>		
1	Cement and Mortar Mixers	9	0.56	6	10	6	302	
1	Pavers Paving Equipment	130 132	0.42	6	10	6	3276 3802	Asphalt? cubic yards or30 round trips?
1	Rollers	80	0.38	7	10	7	2128	
	Other Equipment?	31	0.37	8	10	8	20/1	
	Additional Phases	Start Date:		Total phase:				
		Start Date:				#D0.00	-	
						#DIV/0! #DIV/0!	0	עריין איז
						#DIV/0! #DIV/0!	0	
						#DIV/0!	0	
Equipment ty	vpes listed in "Equipment Types" w	orksheet tab.						
Equipment list	ted in this sheet is to provide an exam	ple of inputs		Complete	e one	sheet	for e	ach project component
It is assumed	that water trucks would be used durin	g grading						
Add or subtra Modify horse	act phases and equipment, as appr power or load factor, as appropriat	opriate e						

Construction Criteria Air Pollutants									
	ROG	NOX	PM10 Exhaust	PM2.5 Exhaust	PM2.5 Fugitive	CO2e			
Year			Tons			MT			
			Construction Equ	ipment					
2025-2026	0.57	1.30	0.02	0.02	0.02	369.20			
		Total Const	ruction Emissions						
Tons	0.57	1.30	0.02	0.02		369.20			
Pounds/Workdays		Average	Daily Emissions			Worl	kdays		
2025-2026	4.09	9.40	0.15	0.14			277		
Threshold - lbs/day	54.0	54.0	82.0	54.0					
		Total Const	ruction Emissions						
Pounds	1132.61	2602.56	42.62	40.04		0.00			
Average	4.09	9.40	0.15	0.14		0.00	277.00		
Threshold - lbs/day	54.0	54.0	82.0	54.0					
					ſ				

24-017 320 Sheridan Drive, Menlo Park T4i Const Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2025) Unmitigated
 - 3.3. Site Preparation (2025) Unmitigated
 - 3.5. Grading (2025) Unmitigated
 - 3.7. Building Construction (2025) Unmitigated

- 3.9. Building Construction (2026) Unmitigated
- 3.11. Paving (2026) Unmitigated
- 3.13. Architectural Coating (2026) Unmitigated
- 3.15. Trenching (2025) Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated

5.4. Vehicles

- 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings

5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies

5.7. Construction Paving

- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources

5.10.1. Hearths

- 5.10.1.1. Unmitigated
- 5.10.2. Architectural Coatings
- 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated

- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	24-017 320 Sheridan Drive, Menlo Park T4i Const
Construction Start Date	6/2/2025
Operational Year	2027
Lead Agency	
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	4.20
Precipitation (days)	18.8
Location	320 Sheridan Dr, Menlo Park, CA 94025, USA
County	San Mateo
City	Menlo Park
Air District	Bay Area AQMD
Air Basin	San Francisco Bay Area
TAZ	1277
EDFZ	1
Electric Utility	Peninsula Clean Energy
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.22

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
------------------	------	------	-------------	-----------------------	---------------------------	-----------------------------------	------------	-------------

Apartments Mid Rise	88.0	Dwelling Unit	2.50	72,528	0.00		253	_
Parking Lot	120	Space	0.00	0.00	0.00	—	—	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	_
Unmit.	102	10.5	0.18	3.28	3.35	0.16	1.47	1.54	4,451
Daily, Winter (Max)	_	_	_	_			_	_	_
Unmit.	0.45	10.2	0.18	0.63	0.80	0.16	0.15	0.32	3,147
Average Daily (Max)	—	_	_	—		_	—	—	_
Unmit.	2.93	4.03	0.06	0.27	0.33	0.06	0.08	0.14	1,279
Annual (Max)	—	<u> </u>					_	<u> </u>	_
Unmit.	0.53	0.74	0.01	0.05	0.06	0.01	0.01	0.02	212

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily - Summer (Max)	—	—	—	—	—	—	—	—	—
2025	0.45	10.5	0.18	3.28	3.35	0.16	1.47	1.54	4,451

2026	102	10.1	0.18	0.63	0.80	0.16	0.15	0.32	3,153
Daily - Winter (Max)	_	_	—	_	—	—	—	—	_
2025	0.45	10.2	0.18	0.63	0.80	0.16	0.15	0.32	3,147
2026	0.44	10.1	0.18	0.63	0.80	0.16	0.15	0.32	3,128
Average Daily	—	_	_	—	_	—	—	—	_
2025	0.17	4.03	0.06	0.27	0.33	0.06	0.08	0.14	1,279
2026	2.93	3.10	0.05	0.19	0.24	0.05	0.04	0.09	951
Annual	—	_	_	—	_	—	_	—	_
2025	0.03	0.74	0.01	0.05	0.06	0.01	0.01	0.02	212
2026	0.53	0.57	0.01	0.03	0.04	0.01	0.01	0.02	158

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	_	_	—	—	_		—	—	—
Unmit.	3.47	0.80	0.02	2.57	2.59	0.01	0.65	0.67	3,058
Daily, Winter (Max)				—		—	—	—	—
Unmit.	3.01	0.89	0.01	2.57	2.59	0.01	0.65	0.67	2,923
Average Daily (Max)	—	—	—	_	—		—	—	—
Unmit.	3.15	0.82	0.01	2.42	2.43	0.01	0.61	0.63	2,807
Annual (Max)				—			<u> </u>	—	—
Unmit.	0.57	0.15	< 0.005	0.44	0.44	< 0.005	0.11	0.11	465

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	_	—	—	—	_	—	_	—	—
Mobile	1.20	0.75	0.01	2.57	2.59	0.01	0.65	0.67	2,757
Area	2.27	0.05	< 0.005	—	< 0.005	< 0.005	_	< 0.005	13.4
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	147
Water	—	—	—	—	—		—		17.6
Waste	—	—	—	—	—		_		122
Refrig.	—	—	—	—	—		_		0.52
Total	3.47	0.80	0.02	2.57	2.59	0.01	0.65	0.67	3,058
Daily, Winter (Max)	—	—	—	—	—		_		—
Mobile	1.18	0.89	0.01	2.57	2.59	0.01	0.65	0.67	2,635
Area	1.83	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	147
Water	—	—	—	—	—		—		17.6
Waste	—	—	—	—	—		—		122
Refrig.	—	—	—	—	—		—		0.52
Total	3.01	0.89	0.01	2.57	2.59	0.01	0.65	0.67	2,923
Average Daily	—	—	—	—	—		—		—
Mobile	1.10	0.80	0.01	2.42	2.43	0.01	0.61	0.63	2,512
Area	2.05	0.02	< 0.005	—	< 0.005	< 0.005	—	< 0.005	6.61
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	147
Water	_	—	—	—	_		—		17.6
Waste	_	—	—	—	_		—		122
Refrig.		—		_			_		0.52
Total	3.15	0.82	0.01	2.42	2.43	0.01	0.61	0.63	2,807
Annual		—	—	_			_		_
Mobile	0.20	0.15	< 0.005	0.44	0.44	< 0.005	0.11	0.11	416

Area	0.37	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.09
Energy	0.00	0.00	0.00	—	0.00	0.00	—	0.00	24.4
Water	_	—	—	_	—	_	—	_	2.92
Waste		—	—	—	—		—		20.3
Refrig.		—	—	—	_		—		0.09
Total	0.57	0.15	< 0.005	0.44	0.44	< 0.005	0.11	0.11	465

3. Construction Emissions Details

3.1. Demolition (2025) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite		—		—	—	—	_	—	_
Daily, Summer (Max)					_		_		_
Off-Road Equipment	0.33	8.81	0.10		0.10	0.09	_	0.09	2,502
Demolition		—		0.00	0.00	—	0.00	0.00	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		—			<u> </u>	—	_		_
Average Daily		—		_		—			_
Off-Road Equipment	0.02	0.48	0.01	—	0.01	0.01	_	0.01	137
Demolition		—		0.00	0.00	—	0.00	0.00	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual		—		—	—	—	_		_
Off-Road Equipment	< 0.005	0.09	< 0.005		< 0.005	< 0.005	_	< 0.005	22.7
Demolition				0.00	0.00	_	0.00	0.00	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
------------------------	---------	---------	---------	---------	---------	---------	---------	---------	------
Offsite	_	_	_	_	_	_	—	_	_
Daily, Summer (Max)	_	_	—	_	_	—	_	—	_
Worker	0.03	0.02	0.00	0.10	0.10	0.00	0.02	0.02	104
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	0.91	0.01	0.14	0.15	0.01	0.04	0.04	621
Daily, Winter (Max)	—	_	_	—	—	—	—	—	_
Average Daily	_	_	_	_	_	—	—	—	_
Worker	< 0.005	< 0.005	0.00	0.01	0.01	0.00	< 0.005	< 0.005	5.42
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.05	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	34.0
Annual	—	—	_	_	_	—	—	—	_
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.90
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	5.63

3.3. Site Preparation (2025) - Unmitigated

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—		—	—	—	_
Daily, Summer (Max)	_	_	_	_	—	—	_	—	_
Off-Road Equipment	0.34	7.95	0.05	_	0.05	0.05	_	0.05	2,726
Dust From Material Movement	_	_	_	0.62	0.62	—	0.07	0.07	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	<u> </u>	<u> </u>					—	_

Average Daily			—			_		_	_
Off-Road Equipment	< 0.005	0.07	< 0.005	—	< 0.005	< 0.005	_	< 0.005	22.4
Dust From Material Movement	_		_	0.01	0.01	_	< 0.005	< 0.005	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual			_			_		_	_
Off-Road Equipment	< 0.005	0.01	< 0.005	_	< 0.005	< 0.005	_	< 0.005	3.71
Dust From Material Movement	_		_	< 0.005	< 0.005	_	< 0.005	< 0.005	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_		—	—	—	—	—	—	_
Daily, Summer (Max)	_		_	_	_	_	_	_	_
Worker	0.02	0.01	0.00	0.06	0.06	0.00	0.01	0.01	62.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_		—	—	—	—	—	—	_
Average Daily	_		—	_	_	_	—	—	_
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.49
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_		—	_	_	_	—	_	_
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.08
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2025) - Unmitigated

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	_	—		—	_	—	_	—	_
Daily, Summer (Max)	_				_	—	_	—	—
Off-Road Equipment	0.32	7.70	0.05		0.05	0.05	_	0.05	2,463
Dust From Material Movement	_			2.77	2.77		1.34	1.34	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—		—	—	—	—	—	_
Average Daily	—	—		—	—	—	—	—	_
Off-Road Equipment	0.01	0.13	< 0.005	—	< 0.005	< 0.005	_	< 0.005	40.5
Dust From Material Movement	_		_	0.05	0.05	—	0.02	0.02	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—		—	—	—	—	—	_
Off-Road Equipment	< 0.005	0.02	< 0.005		< 0.005	< 0.005	_	< 0.005	6.70
Dust From Material Movement	_			0.01	0.01	—	< 0.005	< 0.005	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	<u> </u>	—		—	<u> </u>	—	—	—	—
Daily, Summer (Max)	_		—		_		_		—
Worker	0.02	0.02	0.00	0.08	0.08	0.00	0.02	0.02	82.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.04	2.78	0.02	0.43	0.45	0.02	0.12	0.14	1,906
Daily, Winter (Max)	_	—		—	_	—	_	—	_
Average Daily	_	_		—	_	-	_	-	_

Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	1.30
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.05	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	31.3
Annual	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.22
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	5.18

3.7. Building Construction (2025) - Unmitigated

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite		—	—		—	—	—	—	—
Daily, Summer (Max)	—			—		—	_		
Off-Road Equipment	0.28	9.38	0.17		0.17	0.16	—	0.16	2,209
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		—	—		—	—	—	—	—
Off-Road Equipment	0.28	9.38	0.17		0.17	0.16	_	0.16	2,209
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		—	—		—	—	—	—	—
Off-Road Equipment	0.09	2.97	0.05		0.05	0.05	_	0.05	700
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual		—	—	<u> </u>	—	—	—	—	—
Off-Road Equipment	0.02	0.54	0.01	_	0.01	0.01	—	0.01	116
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	—	—	—	—	—	—	_	—	
Daily, Summer (Max)				—		—		—	
Worker	0.15	0.12	0.00	0.52	0.52	0.00	0.12	0.12	525
Vendor	0.01	0.39	< 0.005	0.07	0.07	< 0.005	0.02	0.02	284
Hauling	< 0.005	0.23	< 0.005	0.03	0.04	< 0.005	0.01	0.01	156
Daily, Winter (Max)	—	—	—	—	—	—	—	—	
Worker	0.15	0.15	0.00	0.52	0.52	0.00	0.12	0.12	500
Vendor	0.01	0.40	< 0.005	0.07	0.07	< 0.005	0.02	0.02	283
Hauling	< 0.005	0.24	< 0.005	0.03	0.04	< 0.005	0.01	0.01	155
Average Daily	—	—	—	—	—	—	—	—	—
Worker	0.05	0.04	0.00	0.16	0.16	0.00	0.04	0.04	159
Vendor	< 0.005	0.13	< 0.005	0.02	0.02	< 0.005	0.01	0.01	89.8
Hauling	< 0.005	0.07	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	49.3
Annual	—	—	—	—		—		—	
Worker	0.01	0.01	0.00	0.03	0.03	0.00	0.01	0.01	26.3
Vendor	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	14.9
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	8.17

3.9. Building Construction (2026) - Unmitigated

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	—	—	—	—		—	—	—	—
Daily, Summer (Max)	—	_	—	—	—	—	—	—	—
Off-Road Equipment	0.28	9.38	0.17	_	0.17	0.16	_	0.16	2,208
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

_	—	—	—	—		—	—	_
0.28	9.38	0.17	_	0.17	0.16	_	0.16	2,208
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
—	—	—	—	—	—	—	—	_
0.08	2.68	0.05	—	0.05	0.05	—	0.05	631
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	_	_	_	_	_	_	—	_
0.01	0.49	0.01	_	0.01	0.01	_	0.01	104
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
—	—	—	—	—		—	—	_
_	_	—	—	—	—	_	—	_
0.14	0.11	0.00	0.52	0.52	0.00	0.12	0.12	514
0.01	0.36	< 0.005	0.07	0.07	< 0.005	0.02	0.02	278
< 0.005	0.22	< 0.005	0.03	0.04	< 0.005	0.01	0.01	152
—	—	_	_	—		—	—	_
0.14	0.14	0.00	0.52	0.52	0.00	0.12	0.12	489
0.01	0.38	< 0.005	0.07	0.07	< 0.005	0.02	0.02	278
< 0.005	0.23	< 0.005	0.03	0.04	< 0.005	0.01	0.01	152
_	_	_	_	_	_		_	_
0.04	0.04	0.00	0.15	0.15	0.00	0.03	0.03	140
< 0.005	0.11	< 0.005	0.02	0.02	< 0.005	0.01	0.01	79.4
< 0.005	0.06	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	43.4
_		_	_		—		_	
0.01	0.01	0.00	0.03	0.03	0.00	0.01	0.01	23.3
< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	13.1
	0.28 0.00 0.08 0.00 0.01 0.00 0.14 0.01 < 0.005 0.14 0.01 < 0.005 0.04 < 0.005 < 0.04 < 0.005 < 0.04 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005 < 0.01 < 0.005	0.28 9.38 0.00 0.00 0.08 2.68 0.00 0.00 0.01 0.00 0.01 0.49 0.00 0.00 0.01 0.00 0.14 0.11 0.01 0.36 < 0.005	0.28 9.38 0.17 0.00 0.00 0.00 0.08 2.68 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.49 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.14 0.11 0.00 0.14 0.14 0.00 0.14 0.14 0.00 0.14 0.14 0.00 0.14 0.14 0.00 0.14 0.14 0.00 0.14 0.14 0.00 0.01 0.38 <0.005	0.289.380.17-0.000.000.000.000.082.680.05-0.000.000.000.000.010.490.010.000.000.000.000.000.000.000.000.000.010.010.000.000.020.010.020.010.030.010.020.010.140.110.000.520.010.22<0.005	0.289.380.17-0.000.000.000.000.000.000.000.082.680.05-0.030.000.010.000.000.000.000.000.010.490.010.000.000.000.000.000.000.000.000.000.010.020.010.020.020.020.020.030.040.030.220.050.030.04-0.140.140.000.030.04-0.140.140.000.030.04-0.140.140.000.030.04-0.040.020.050.030.04-0.040.040.010.150.15-0.050.110.050.010.11-0.010.110.000.030.030.010.010.010.010.010.030.03	0.289.380.17-0.170.160.000.000.000.000.000.000.080.010.010.010.010.010.080.000.000.000.010.010.010.010.010.010.010.010.020.010.020.010.010.020.010.010.030.010.020.020.020.010.140.110.000.120.120.010.140.140.010.120.010.010.140.140.010.130.140.010.140.140.010.150.140.010.140.140.010.150.140.010.140.140.010.140.010.010.140.140.010.140.010.010.140.140.010.140.010.010.140.140.010.140.01 </td <td>0.289.380.17-0.010.010.010.000.000.000.000.010.010.010.010.010.010.010.010.082.890.05-0.010.010.010.010.010.010.020.020.020.01<t< td=""><td>028038300.71000.71000.161000.10000.0000.0000.0000.0000.000.000.000.000.000.000.000.000.000.000.01000.02000.01000.01000.01000.01000.01000.01000.01000.010000.01000.01000.01000.01000.01000.01000.01000.01000.010000.010000.01000.01000.01000.01000.01000.01000.01000.010000.010000.010000.010000.01000.01000.01000.01000.01000.010000.020000.010000.010000.010000.010000.010000.010000.010000.010000.020000.020000.020000.010000.010000.010000.010000.010000.010000.020000.020000.020000.010000.010000.010000.010000.010000.010000.020000.020000.020000.020000.010000.01000<</td></t<></td>	0.289.380.17-0.010.010.010.000.000.000.000.010.010.010.010.010.010.010.010.082.890.05-0.010.010.010.010.010.010.020.020.020.01 <t< td=""><td>028038300.71000.71000.161000.10000.0000.0000.0000.0000.000.000.000.000.000.000.000.000.000.000.01000.02000.01000.01000.01000.01000.01000.01000.01000.010000.01000.01000.01000.01000.01000.01000.01000.01000.010000.010000.01000.01000.01000.01000.01000.01000.01000.010000.010000.010000.010000.01000.01000.01000.01000.01000.010000.020000.010000.010000.010000.010000.010000.010000.010000.010000.020000.020000.020000.010000.010000.010000.010000.010000.010000.020000.020000.020000.010000.010000.010000.010000.010000.010000.020000.020000.020000.020000.010000.01000<</td></t<>	028038300.71000.71000.161000.10000.0000.0000.0000.0000.000.000.000.000.000.000.000.000.000.000.01000.02000.01000.01000.01000.01000.01000.01000.01000.010000.01000.01000.01000.01000.01000.01000.01000.01000.010000.010000.01000.01000.01000.01000.01000.01000.01000.010000.010000.010000.010000.01000.01000.01000.01000.01000.010000.020000.010000.010000.010000.010000.010000.010000.010000.010000.020000.020000.020000.010000.010000.010000.010000.010000.010000.020000.020000.020000.010000.010000.010000.010000.010000.010000.020000.020000.020000.020000.010000.01000<

Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	7.19
---------	---------	------	---------	---------	---------	---------	---------	---------	------

3.11. Paving (2026) - Unmitigated

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	_	_	—	_	—	—	_	—	_
Daily, Summer (Max)	_	_	—	_	—	_	—		_
Off-Road Equipment	0.18	5.88	0.08	—	0.08	0.08	_	0.08	1,248
Paving	0.00		—		—		—		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_		—		—	_	_	—	_
Average Daily	_		—		—	—	_	—	_
Off-Road Equipment	< 0.005	0.16	< 0.005		< 0.005	< 0.005	_	< 0.005	34.2
Paving	0.00		—		—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_		—		—	—	—	—	_
Off-Road Equipment	< 0.005	0.03	< 0.005		< 0.005	< 0.005	_	< 0.005	5.66
Paving	0.00		—		—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_		—		—	—	—	—	_
Daily, Summer (Max)	_		—		—		_		_
Worker	0.03	0.03	0.00	0.12	0.12	0.00	0.03	0.03	122
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	0.69	0.01	0.11	0.12	0.01	0.03	0.04	486

Daily, Winter (Max)									—
Average Daily	—	—		—	—	—	—		—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	3.19
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	13.3
Annual	—	—	—	—	—	—	—		_
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.53
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	2.20

3.13. Architectural Coating (2026) - Unmitigated

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite		—	—	—	—	—	—		—
Daily, Summer (Max)	—		_		_		_	—	—
Off-Road Equipment	0.02	1.07	0.03		0.03	0.03	_	0.03	134
Architectural Coatings	102		_		_		_	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		—	_	—	_	—	—		_
Average Daily		—	_	—	—	—	—		_
Off-Road Equipment	< 0.005	0.03	< 0.005		< 0.005	< 0.005	_	< 0.005	3.67
Architectural Coatings	2.80		_		_		_	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual		—		—		—			_

Off-Road Equipment	< 0.005	0.01	< 0.005		< 0.005	< 0.005		< 0.005	0.61
Architectural Coatings	0.51		—	_		_		_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—		—	—	—	—		—	—
Daily, Summer (Max)			—	_		_		_	_
Worker	0.03	0.02	0.00	0.10	0.10	0.00	0.02	0.02	103
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	—	—	—	—		—	—
Average Daily	—	_	—	—	—	—	_	—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.69
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—		—	—	—	—		—	—
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.45
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.15. Trenching (2025) - Unmitigated

Location	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Onsite	<u> </u>	<u> </u>	—		—	—	—	—	_
Daily, Summer (Max)	—	—	_	_	_	—	_	—	_
Off-Road Equipment	0.07	2.28	0.04	_	0.04	0.03	_	0.03	434

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	—	—	_	_		_	—	_
Average Daily	_	_	—	—	—	_	—	—	_
Off-Road Equipment	< 0.005	0.04	< 0.005	_	< 0.005	< 0.005	_	< 0.005	7.13
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—		—	—	_
Off-Road Equipment	< 0.005	0.01	< 0.005	_	< 0.005	< 0.005	_	< 0.005	1.18
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—		—	—	_
Daily, Summer (Max)	—	_	—	_	_	—	_	—	_
Worker	0.01	0.01	0.00	0.04	0.04	0.00	0.01	0.01	41.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—		—	—	_
Average Daily	—	—	—	—	—		—	—	_
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.65
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	—	_	_		—	—	_
Worker	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.11
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Apartments Mid Rise	1.20	0.75	0.01	2.57	2.59	0.01	0.65	0.67	2,757
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.20	0.75	0.01	2.57	2.59	0.01	0.65	0.67	2,757
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Apartments Mid Rise	1.18	0.89	0.01	2.57	2.59	0.01	0.65	0.67	2,635
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.18	0.89	0.01	2.57	2.59	0.01	0.65	0.67	2,635
Annual	—	_	—	—	_	—	—	—	_
Apartments Mid Rise	0.20	0.15	< 0.005	0.44	0.44	< 0.005	0.11	0.11	416
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.20	0.15	< 0.005	0.44	0.44	< 0.005	0.11	0.11	416

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	—

Apartments Mid Rise					_		_		147
Parking Lot	—		—	_	_	—	_		0.00
Total	—		—	_	_	—	_		147
Daily, Winter (Max)	—		—	_	_	_	_	_	_
Apartments Mid Rise				_	_	—	_	_	147
Parking Lot	—	<u> </u>	—	<u> </u>	—	—	—		0.00
Total	—		—	<u> </u>	—	—	—		147
Annual	—	<u> </u>	—	<u> </u>	—	—	—		—
Apartments Mid Rise				_	_	—	_	_	24.4
Parking Lot									0.00
Total	_	_	_	_	_	_	_		24.4

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	_	—	—
Apartments Mid Rise	0.00	0.00	0.00	_	0.00	0.00	_	0.00	0.00
Parking Lot	0.00	0.00	0.00	_	0.00	0.00	_	0.00	0.00
Total	0.00	0.00	0.00	_	0.00	0.00	—	0.00	0.00
Daily, Winter (Max)	—			_	_		—		_
Apartments Mid Rise	0.00	0.00	0.00	_	0.00	0.00	_	0.00	0.00
Parking Lot	0.00	0.00	0.00	—	0.00	0.00	<u> </u>	0.00	0.00
Total	0.00	0.00	0.00		0.00	0.00	<u> </u>	0.00	0.00

Annual				—					_
Apartments Mid Rise	0.00	0.00	0.00	_	0.00	0.00	—	0.00	0.00
Parking Lot	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Total	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Hearths	0.00	0.00	0.00	_	0.00	0.00	_	0.00	0.00
Consumer Products	1.55	_	_	_	_	_	_	_	_
Architectural Coatings	0.28	_	_	_	_	_	_	_	_
Landscape Equipment	0.44	0.05	< 0.005	_	< 0.005	< 0.005	_	< 0.005	13.4
Total	2.27	0.05	< 0.005	_	< 0.005	< 0.005	_	< 0.005	13.4
Daily, Winter (Max)	_	_	_	_	_	—	—	—	_
Hearths	0.00	0.00	0.00	_	0.00	0.00	_	0.00	0.00
Consumer Products	1.55	_	—	_	_	_	_	_	_
Architectural Coatings	0.28	_	_	_	_	_	_	_	_
Total	1.83	0.00	0.00	—	0.00	0.00	—	0.00	0.00
Annual	_		_	—	_	_	—		_
Hearths	0.00	0.00	0.00	_	0.00	0.00	_	0.00	0.00

Consumer Products	0.28	_	_	_	_		_	_	_
Architectural Coatings	0.05	_	_	_	_	_	_	_	_
Landscape Equipment	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	1.09
Total	0.37	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.09

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	_	—	—	—	—
Apartments Mid Rise	—				_	—	_		17.6
Parking Lot		—	—	—	—		—	—	0.00
Total		—	—	—	—		—	—	17.6
Daily, Winter (Max)		—	—	—	—		—	—	—
Apartments Mid Rise					_	—	_		17.6
Parking Lot		—	—	—	—		—	—	0.00
Total		—	—	—	—		—	—	17.6
Annual		—	—	—	—		—	—	—
Apartments Mid Rise					_	—	_		2.92
Parking Lot		—	—	—	_		_	—	0.00
Total		—	—	—	—		_	—	2.92

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—		—	—		—
Apartments Mid Rise	—	—	—	—		—	—		122
Parking Lot	—	_	—	_	—		_	—	0.00
Total	_	_	_	_	_			_	122
Daily, Winter (Max)	—	—	—	—	—		—	—	—
Apartments Mid Rise	_	_	_	_					122
Parking Lot									0.00
Total	_	_	_	_			_		122
Annual									—
Apartments Mid Rise	_	_	_	_			_		20.3
Parking Lot									0.00
Total									20.3

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	_	_	—	—	_	—	—	—

Apartments Mid Rise	—	—	—	—	—	—	_	—	0.52
Total	—	<u> </u>	—	<u> </u>	—	—		—	0.52
Daily, Winter (Max)	—	<u> </u>	—	<u> </u>	—	—		—	—
Apartments Mid Rise		_	—	—	—	—		—	0.52
Total	—		_		—	—	_		0.52
Annual	—		_		_	—	_		_
Apartments Mid Rise			_	_	_	_	_	_	0.09
Total	_		_	_	_	_	_	_	0.09

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	_	—	—	—	_		—	—	—
Total	—	—		—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—
Total	_	—		—	_	—	—	—	—

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	_	—	_	_	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	_	—	—	—	—	—	—	—
Total	—	_	—	—	—	—	—	—	—
Annual	—	_	—	—	—	—	—	—	_
Total	—	_	—	—		—	—	—	—

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—
Total	—		—	—		—	—	—	—
Daily, Winter (Max)	—			—			<u> </u>		—
Total	—			—			<u> </u>		—
Annual	—			—			<u> </u>		—
Total	_		_	_					

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetation	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e	
Daily, Summer (Max)	—	_	_	_	_	—		—	—	
28 / 45										

Total		—	—	—	—	—	—	—	—
Daily, Winter (Max)		—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—		—	—
Total		—	—	—	—	—		—	—

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	_					_			_
Total	_	—		—				—	_
Daily, Winter (Max)	—	—		—					_
Total	—	—	<u> </u>	—	<u> </u>				_
Annual	—	—	—	—	—	—	—	—	—
Total	<u> </u>	—		—				_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	ROG	NOx	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2e
Daily, Summer (Max)	_	—	—	—	_	—	_	—	—
Avoided	_	—		—	—	—	—		_
Subtotal	—	—		—	—	—	—		—
Sequestered		—		—	—				—
Subtotal	—	—		—	—	—	—		—
Removed	—	—	—	—	—	—	—	—	—
Subtotal					<u> </u>				

—	—	—	—	—	—	—	—	 —
Daily, Winter (Max)		_	—	—	_		—	 —
Avoided		—	—	—	_	_	_	 —
Subtotal	_	—	—	—	_	_	_	 —
Sequestered		—	—	—	_	_	_	 —
Subtotal		—	—	—	_	_	_	 —
Removed	_	_	—	—	_	_	_	 —
Subtotal		—	—	—	_	_	_	 —
_	_	_	—	—	_		_	 —
Annual		_	—	—	_		_	 —
Avoided		_	—	—	_		_	 —
Subtotal		_	—	—	_		_	 —
Sequestered		—	—	—	_		_	 —
Subtotal		—	—	—	_		_	 —
Removed	_	—	—	—	_	_	—	 —
Subtotal			—					 —
				_				 —

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	6/2/2025	6/30/2025	5.00	20.0	—
Site Preparation	Site Preparation	7/1/2025	7/5/2025	5.00	3.00	—
Grading	Grading	7/6/2025	7/14/2025	5.00	6.00	—
Building Construction	Building Construction	7/23/2025	5/26/2026	5.00	220	—
Paving	Paving	6/10/2026	6/23/2026	5.00	10.0	—

Architectural Coating	Architectural Coating	5/27/2026	6/9/2026	5.00	10.0	
Trenching	Trenching	7/15/2025	7/22/2025	5.00	6.00	—

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	3.00	8.00	84.0	0.37
Demolition	Rubber Tired Dozers	Diesel	Tier 4 Interim	1.00	8.00	367	0.40
Demolition	Concrete/Industrial Saws	Diesel	Tier 4 Interim	1.00	8.00	33.0	0.73
Site Preparation	Graders	Diesel	Tier 4 Interim	1.00	8.00	148	0.41
Site Preparation	Scrapers	Diesel	Tier 4 Interim	1.00	8.00	423	0.48
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	1.00	7.00	84.0	0.37
Grading	Graders	Diesel	Tier 4 Interim	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 4 Interim	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	2.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 4 Interim	1.00	8.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 4 Interim	2.00	7.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Tier 4 Interim	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	1.00	6.00	84.0	0.37
Building Construction	Welders	Diesel	Tier 4 Interim	3.00	8.00	46.0	0.45
Paving	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	1.00	8.00	84.0	0.37
Paving	Pavers	Diesel	Tier 4 Interim	1.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Tier 4 Interim	1.00	8.00	89.0	0.36

Paving	Rollers	Diesel	Tier 4 Interim	2.00	8.00	36.0	0.38
Paving	Cement and Mortar Mixers	Diesel	Tier 4 Interim	1.00	8.00	10.0	0.56
Architectural Coating	Air Compressors	Diesel	Tier 4 Interim	1.00	6.00	37.0	0.48
Trenching	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	1.00	8.00	84.0	0.37
Trenching	Excavators	Diesel	Tier 4 Interim	1.00	8.00	36.0	0.38

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	_	_	_	—
Demolition	Worker	12.5	11.7	LDA,LDT1,LDT2
Demolition	Vendor	_	8.40	HHDT,MHDT
Demolition	Hauling	7.50	20.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Site Preparation	_	_	_	—
Site Preparation	Worker	7.50	11.7	LDA,LDT1,LDT2
Site Preparation	Vendor	_	8.40	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	—
Grading	Worker	10.0	11.7	LDA,LDT1,LDT2
Grading	Vendor	_	8.40	HHDT,MHDT
Grading	Hauling	23.0	20.0	HHDT
Grading	Onsite truck	_		HHDT
Building Construction	_	_		_

Building Construction	Worker	63.4	11.7	LDA,LDT1,LDT2
Building Construction	Vendor	9.41	8.40	HHDT,MHDT
Building Construction	Hauling	1.88	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	11.7	LDA,LDT1,LDT2
Paving	Vendor	_	8.40	HHDT,MHDT
Paving	Hauling	6.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	12.7	11.7	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	8.40	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT
Trenching	_	_	_	_
Trenching	Worker	5.00	11.7	LDA,LDT1,LDT2
Trenching	Vendor	_	8.40	HHDT,MHDT
Trenching	Hauling	0.00	20.0	HHDT
Trenching	Onsite truck			HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Control Strategies Applied	PM10 Reduction	PM2.5 Reduction
Water unpaved roads twice daily	55%	55%
Limit vehicle speeds on unpaved roads to 25 mph	44%	44%

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	146,869	48,956	0.00	0.00	—

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (Ton of Debris)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	_	—
Site Preparation			4.50	0.00	—
Grading	1,102	_	6.00	0.00	_
Paving	0.00	0.00	0.00	0.00	0.00

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Apartments Mid Rise		0%
Parking Lot	0.00	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	100.0	0.03	< 0.005
2026	0.00	100.0	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Apartments Mid Rise	479	432	360	166,106	3,657	3,301	2,750	1,269,056
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)
Apartments Mid Rise	
Wood Fireplaces	0
Gas Fireplaces	0
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	0
Conventional Wood Stoves	0
Catalytic Wood Stoves	0
Non-Catalytic Wood Stoves	0
Pellet Wood Stoves	0

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
146869.19999999998	48,956	0.00	0.00	—

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Apartments Mid Rise	527,267	100.0	0.0330	0.0040	0.00
Parking Lot	0.00	100.0	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Apartments Mid Rise	3,191,443	0.00
Parking Lot	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Apartments Mid Rise	65.0	_
Parking Lot	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Apartments Mid Rise	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0
Apartments Mid Rise	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
5.16.2. Process Boiler	S					

	Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
--	----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type		Fuel Type	
5.18. Vegetation			
5.18.1. Land Use Change			
5.18.1.1. Unmitigated			
Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
5.18.1. Biomass Cover Type			
5.18.1.1. Unmitigated			
Biomass Cover Type	Initial Acres	Final Acres	
5.18.2. Sequestration			
5.18.2.1. Unmitigated			
Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
6. Climate Risk Detailed F	Report		

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	11.8	annual days of extreme heat

Extreme Precipitation	4.05	annual days with precipitation above 20 mm
Sea Level Rise	_	meters of inundation depth
Wildfire	10.7	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ³/₄ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	
AQ-Ozone	10.6
AQ-PM	13.2
AQ-DPM	76.3
Drinking Water	47.6
Lead Risk Housing	71.3
Pesticides	0.00

Toxic Releases	26.6
Traffic	94.7
Effect Indicators	
CleanUp Sites	33.9
Groundwater	70.3
Haz Waste Facilities/Generators	95.8
Impaired Water Bodies	0.00
Solid Waste	67.6
Sensitive Population	
Asthma	22.0
Cardio-vascular	8.84
Low Birth Weights	18.6
Socioeconomic Factor Indicators	
Education	2.30
Housing	6.89
Linguistic	2.81
Poverty	2.12
Unemployment	10.7

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	
Above Poverty	90.60695496
Employed	75.70896959
Median HI	97.24111382
Education	

Bachelor's or higher	94.58488387
High school enrollment	15.50109072
Preschool enrollment	95.7141024
Transportation	
Auto Access	95.6242782
Active commuting	54.63877839
Social	
2-parent households	81.81701527
Voting	98.1265238
Neighborhood	
Alcohol availability	92.28795073
Park access	48.28692416
Retail density	28.12780701
Supermarket access	34.0177082
Tree canopy	92.76273579
Housing	
Homeownership	90.68394713
Housing habitability	91.96715001
Low-inc homeowner severe housing cost burden	81.31656615
Low-inc renter severe housing cost burden	72.78326703
Uncrowded housing	70.98678301
Health Outcomes	
Insured adults	95.73976646
Arthritis	0.0
Asthma ER Admissions	94.1
High Blood Pressure	0.0
Cancer (excluding skin)	0.0

Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	93.2
Cognitively Disabled	43.0
Physically Disabled	65.4
Heart Attack ER Admissions	99.0
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	19.6
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	—
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	67.1
Children	51.6
Elderly	55.7
English Speaking	98.1
Foreign-born	22.8
Outdoor Workers	72.9
Climate Change Adaptive Capacity	_

Impervious Surface Cover	75.1
Traffic Density	88.5
Traffic Access	50.9
Other Indices	
Hardship	15.1
Other Decision Support	
2016 Voting	97.3

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	5.00
Healthy Places Index Score for Project Location (b)	97.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

C	or	0	\sim	•
0		e	=	
-	<u> </u>	<u> </u>	<u> </u>	

Justification

Characteristics: Utility Information	Menlo Park default clean energy provider is Peninsula Clean Energy.
Land Use	Total lot acreage, number of dwelling units, square footage, and total parking spaces provided by provided worksheet.
Construction: Construction Phases	Defaults based on provided start date - added trenching.
Construction: Off-Road Equipment	Defaults based on provided land uses. Applicant is committing to the usage of Tier 4 Interim equipment.
Construction: Trips and VMT	Demolition = 75 demolition truck round trips (7.5 trips/day), Building = 207 concrete truck round trips (1.88 trips/day), Paving = 30 asphalt truck round trips (6 trips/day).
Operations: Hearths	No hearths.
Operations: Energy Use	Menlo Park REACH Code - no natural gas in new residential construction - convert natural gas to electricity.
Operations: Water and Waste Water	Wastewater treatment 100% aerobic - no septic tanks or lagoons.

2. Emissions Summary - HRA

2.2 Construction Emissions by Year, Unmitigated

Year ROG NOx PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T CO₂e Daily - Summer (Max)

2025 0.4288018 9.5841331 0.1708250 2.7980079 2.8452080 0.1598724 1.3442632 1.3914632 2732.7090972642686

2026 102.18703 9.5773863 0.1708250 0.0546072 0.2254323 0.1598724 0.0131503 0.1730228 2316.04202093077

Daily - Winter (Max)

 2025
 0.4269073 9.5989706 0.1708665 0.0546072 0.2254737 0.1599139 0.0131503 0.1730643 2316.4737780400137

2026 0.4168805 9.5911172 0.1708250 0.0546072 0.2254323 0.1598724 0.0131503 0.1730228 2314.1481972373826 Average Daily

2025 0.1639410 3.7699263 0.0613235 0.0691551 0.1304787 0.0575788 0.0270043 0.0845832 946.9526408221687

2026 2.9242802 2.9329791 0.0518391 0.0161003 0.0679394 0.0485133 0.0038770 0.0523903 700.6425053215972

Annual

2025 0.0299192 0.6880115 0.0111915 0.0126208 0.0238123 0.0105081 0.0049282 0.0154364 156.7788162586258

 2026
 0.5336811 0.5352687 0.0094606 0.0029383 0.0123989 0.0088536 0.0007075 0.0095612 115.99936244903112

5.3. Const	truction Vel	hicles - HRA	Ą	
5.3.1 Unn	nitigated			
Phase Nai	m Trip Type	One-Way 1 Miles per 1 Vehicle Mix		
Demolitio	n			
Demolitio	or Worker	12.5	1	LDA,LDT1,LDT2
Demolitio	or Vendor		1	HHDT,MHDT
Demolitio	or Hauling	7.5	1	HHDT
Demolitio	or Onsite tru	IC		HHDT
Site Prepa	aration			
Site Prepa	ar Worker	7.5	1	LDA,LDT1,LDT2
Site Prepa	ar Vendor		1	HHDT,MHDT
Site Prepa	ar Hauling	0	1	HHDT
Site Prepar Onsite truc				HHDT
Grading				
Grading	Worker	10	1	LDA,LDT1,LDT2
Grading	Vendor		1	HHDT,MHDT
Grading	Hauling	23	1	HHDT
Grading	Onsite tru	IC		HHDT
Building C	Construction	า		
Building C	C Worker	63.36	1	LDA,LDT1,LDT2
Building C	C Vendor	9.4072	1	HHDT,MHDT
Building C	C Hauling	1.88	1	HHDT
Building Cc Onsite truc				HHDT
Paving				
Paving	Worker	15	1	LDA,LDT1,LDT2
Paving	Vendor		1	HHDT,MHDT
Paving	Hauling	6	1	HHDT
Paving	Onsite tru	IC		HHDT
Architectu	ural Coating	5		
Architectu	u Worker	12.672	1	LDA,LDT1,LDT2
Architectu	ulVendor		1	HHDT,MHDT
Architectu	uHauling	0	1	HHDT
Architectu: Onsite truc				HHDT
Trenching	5			
Trenching	g Worker	5	1	LDA,LDT1,LDT2
Trenching	g Vendor		1	HHDT,MHDT
Trenching	g Hauling	0	1	HHDT
Trenching Onsite truc				HHDT
Attachment 2: Project Construction Emissions and Health Risk Calculations

320 Sheridan Drive, Menlo Park, CA Construction Health Impact Summary

	Maximum Con	centrations			Maximum
Emissions	Exhaust PM10/DPM	Fugitive PM2.5	Cancer Risk (per million)	Hazard Index	Annual PM2.5 Concentration
Year	$(\mu g/m^3)$	$(\mu g/m^3)$	Infant/Child	(-)	$(\mu g/m^3)$
2025 + 2026	0.0967	0.0336	17.19	0.02	0.13
Total	-	-	17.19		-
Maximum	0.0967	0.0336	-	0.02	0.13

Maximum Impacts at MEI Location - Without Conditions of Approval

Maximum Impacts at MEI Location - With Conditions of Approval

	Maximum Concentrations						
	Exhaust	Fugitive	Cancer Risk	Hazard	Annual PM2.5		
Emissions	PM10/DPM	PM2.5	(per million)	Index	Concentration		
Year	$(\mu g/m^3)$	$(\mu g/m^3)$	Infant/Child	(-)	$(\mu g/m^3)$		
2025 + 2026	0.0450	0.0157	8.00	0.01	0.06		
Total	-	-	8.00	-	-		
Maximum	0.0450	0.0157	-	0.01	0.06		

Maximum Impacts at Belle Haven Home Daycare - Without Conditions of Approval

	Unmitigated Emissions								
	Maximum Conc	centrations		Maximum					
	Exhaust	Fugitive	Child	Annual PM2.5					
Construction	PM10/DPM	PM2.5	Cancer Risk	Concentration					
Year	$(\mu g/m^3)$	$(\mu g/m^3)$	(per million)	$(\mu g/m^3)$					
2025 + 2026	0.0039	0.0009	2.14	0.00					
Total	-	-	2.14	-					
Maximum	0.0039	0.0009	-	0.00					

320 Sheridan Drive, Menlo Park, CA

DPM Emissions and Modeling Emission Rates - Without Conditions of Approval

								DPM
							Modeled	Emission
Construction		DPM	Area	I	OPM Emissi	ons	Area	Rate
Year	Activity	(ton/year)	Source	(lb/yr)	(lb/hr)	(g/s)	(m ²)	$(g/s/m^2)$
2025	Construction	0.0320	CON_DPM	63.9	0.01946	2.45E-03	10,953	2.24E-07
2026	Construction	0.0202	CON_DPM	40.3	0.01228	1.55E-03	10,953	1.41E-07
Total		0.0521		104.3	0.0317	0.0040		

Construction Hours

hr/day = 9 (8am - 5pm) 365 days/yr = 3285 hours/year =

DPM Construction Emissions and Modeling Emission Rates - With Conditions of Approval

Construction		DPM	Area	I	OPM Emissi	Modeled Area	DPM Emission Rate	
Year	Activity	(ton/year)	Source	(lb/yr)	(lb/hr)	(g/s)	(m ²)	$(g/s/m^2)$
2025	Construction	0.0131	CON_DPM	26.1	0.00795	1.00E-03	10,953	9.15E-08
2026	Construction	0.0112	CON_DPM	22.4	0.00682	8.59E-04	10,953	7.84E-08
Total		0.0243		48.5	0.0148	0.0019		
		Constructio	n Hours					
		hr/dov -	0	(9 am 5 m	~)			

hr/day =	9	(8am - 5pm)
days/yr =	365	
hours/year =	3285	

320 Sheridan Drive, Menlo Park, CA

PM2.5 Fugitive Dust Emissions for Modeling - Without Conditions of Approval

Construction Year	Activity	Area Source	(ton/year)	PM2.5 (lb/yr)	Emissions (lb/hr)	(g/s)	Modeled Area (m ²)	PM2.5 Emission Rate g/s/m ²
2025	Construction	CON_FUG	0.0114	22.7	0.00692	8.71E-04	10,953	7.95E-08
2026	Construction	CON_FUG	0.0007	1.4	0.00043	5.43E-05	10,953	4.96E-09
Total			0.0121	24.1	0.0073	0.0009		
		Construction	Hours					
		hr/day =	9	(8am - 5p	m)			
		days/yr =	365					
		hours/year =	3285					

PM2.5 Fugitive Dust Construction Emissions for Modeling - With Conditions of Approval

Construction		Area		PM2.5	Emissions		Modeled Area	PM2.5 Emission Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m ²)	g/s/m ²
2025	Construction	CON_FUG	0.0049	9.9	0.00300	3.78E-04	10,953	3.45E-08
2026	Construction	CON_FUG	0.0007	1.4	0.00043	5.43E-05	10,953	4.96E-09
Total			0.0056	11.3	0.0034	0.0004		
		Construction	Hours					

hr/day = 9 (8am - 5pm)

days/yr = 365

hours/year = 3285

320 Sheridan Drive, Menlo Park, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)¹ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = \text{concentration in air } (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

. [1		Adult		
Age>	3rd Trimester	Trimester 0 - 2 2 - 16			
Parameter	10	10	2	1	
ASF -	1 10E+00	1 10E+00	5 1 10E+00	1 1 10E+00	
DBR*=	361	102100	572	261	
A =	1	1	1	1	
EF =	350	350	350	350	
AT =	70	70	70	70	
FAH =	1.00	1.00	1.00	0.73	

Infant/Child - Exposure Information

0.0000

0.0000

0.0000

0.0000

0.0000

* 95th percentile breathing rates for infants and 80th percentile for children and adults Construction Cancer Risk by Year - Maximum Impact Receptor Location

Exposure Modeled Cancer Cancer Age Age Exposure Duration DPM Conc (ug/m3) Sensitivity Risk DPM Conc (ug/m3) Sensitivity Risk Hazard Age -0.25 - 0 Year 2025 + 2026 Year 2025 + 2026 Year (years) Annual Factor (per millio Annual Factor (per million) Index 0.25 0.0928 0.0928 0 10 1.26 0 - 1 2025 + 2026 0.0928 10 15.24 2025 + 2026 0.0928 1 0.27 0.019 2 1 - 2 0.0000 10 0.00 0.0000 0.00 2 - 3 3 0.0000 3 0.00 0.0000 0.00 1 4 3 - 4 0.0000 3 0.00 0.0000 0.00 1 4 - 5 0.0000 3 0.00 0.0000 0.00 5 5 - 6 0.0000 3 0.00 0.0000 0.00 6 7 1 6 - 7 0.0000 3 0.00 0.0000 0.00 7 - 8 0.0000 0.00 0.0000 0.00 8 3 9 8 - 9 0.0000 0.0000 3 0.00 0.00 1 10 9 - 10 0.0000 3 0.00 0.0000 0.00 11 10 - 11 0.0000 3 0.00 0.0000 0.00 12 11 - 12 0.0000 3 3 0.00 0.0000 0.00 12 - 13 13 0.0000 0.00 0.0000 0.00 14 13 - 14 0.0000 0.00 0.0000 0.00 3 15 14 - 15 0.0000 3 0.000.0000 0.00 16 15 - 16 0.0000 3 0.00 0.0000 0.00 0.0000 0.00 0.0000 0.00 17 16-17 1 18 17-18 0.0000 0.00 0.0000 0.00 1 19 18-19 0.0000 0.00 0.0000 0.00 20 19-20 0.0000 0.00 0.0000 0.00 21 0.0000 20-21 0.0000 0.00 0.00 22 21-22 0.0000 0.00 0.0000 0.00 1 23 22-23 0.0000 0.00 0.0000 0.00 24 23-24 0.0000 0.00 0.0000 0.00 25 24-25 0.0000 0.00 0.0000 0.00

Infant/Child

0.00

0.00

0.00

0.00

0.00

16.50

Adult

0.00

0.00

0.00

0.00

0.00

0.27

Maximum

Fugitive

PM2.5

0.03

Total

PM2.5

0.12

Adult - Exposure Information

0.0000

0.0000

0.0000

0.0000

0.0000

30 1 Total Increased Cancer Risk 25-26

26-27

27-28

28-29

29-30

* Third trimester of pregnancy

26

27

28

29

320 Sheridan Drive, Menlo Park, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)¹ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor

EF = Exposure frequency (days/year) 10^{-6} = Conversion factor

Values

_ []		Adult	
Age>	3rd Trimester	16 - 30		
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	- Exposure I	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer		Maximum	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2025 + 2026	0.0967	10	1.31	2025 + 2026	0.0967	-	-		_	
1	1	0 - 1	2025 + 2026	0.0967	10	15.88	2025 + 2026	0.0967	1	0.28	0.019	0.03	0.13
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increase	d Cancer Ris	sk				17.19				0.28			

320 Sheridan Drive, Menlo Park, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: C_{air} = concentration in air ($\mu g/m^3$) DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 $10^{-6} =$ Conversion factor

Values

]		Adult			
Age>	3rd Trimester	3rd Trimester 0 - 2 2 - 16				
Parameter						
ASF =	10	10	3	1		
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00		
DBR* =	361	1090	572	261		
A =	1	1	1	1		
EF =	350	350	350	350		
AT =	70	70	70	70		
FAH =	1.00	1.00	1.00	0.73		

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Exposure l	Information	Infant/Child	Adult - Ex	posure Infor	mation	Adult	
	Exposure				Age	Cancer	Model	led	Age	Cancer	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index
0	0.25	-0.25 - 0*	2025 + 2026	0.0432	10	0.59	2025 + 2026	0.0432	-	-	
1	1	0 - 1	2025 + 2026	0.0432	10	7.09	2025 + 2026	0.0432	1	0.12	0.009
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00	
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00	
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00	
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00	
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00	
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00	
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00	
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00	
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00	
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00	
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00	
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00	
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00	
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00	
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00	
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00	
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00	
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00	
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00	
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00	
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00	
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00	
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00	
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00	
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00	
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00	
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00	
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00	
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00	
Total Increas	ed Cancer Ri	sk				7.68			1	0.12	

* Third trimester of pregnancy

 Hazard
 Fugitive
 Total

 Index
 PM2.5
 PM2.5

 0.009
 0.01
 0.06

320 Sheridan Drive, Menlo Park, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$ DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 $10^{-6} =$ Conversion factor

Values

		Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Exposure l	Information	Infant/Child	Adult - Exposure Information		mation	Adult		
	Exposure				Age	Cancer	Modeled		Age	Cancer		Maximun
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5
0	0.25	-0.25 - 0*	2025 + 2026	0.0450	10	0.61	2025 + 2026	0.0450	-	-		
1	1	0 - 1	2025 + 2026	0.0450	10	7.39	2025 + 2026	0.0450	1	0.13	0.009	0.02
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00		
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00		
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00		•
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00		
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00		
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00		
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00		
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00		
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00		
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00		
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00		
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00		
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00		
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00		
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00		
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00		
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00		
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00		
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00		
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00		
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00		
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00		
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00		
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00		
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00		
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00		
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00		
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00		
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00		
Total Increas	ed Cancer Ri	sk		1		8.00		1	1	0.13		

Total PM2.5 0.06

320 Sheridan Drive, Menlo Park, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Belle Haven Home Daycare - 1 meter - Infant/Child Exposure

Student Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

Inhalation Dose = $C_{air} x$ SCAF x 8-Hr BR x A x (EF/365) x 10⁻⁶

Where: $C_{air} = concentration in air (\mu g/m^3)$

SCAF = School Child Adjustment Factor (unitless) for source operation

and exposures different than 8 hours/day

= (24/SHR) x (7days/SDay) x (SCHR/8 hrs)

SHR = Hours/day of emission source operation

SDay = Number of days per week of source operation

SCHR = School operation hours while emission source in operation

8-Hr BR = Eight-hour breathing rate (L/kg body weight-per 8 hrs)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	Infant	Child
Age>	0 - <2	2 - <16
Parameter		
ASF =	10	3
DPM CPF =	1.10E+00	1.10E+00
8-Hr BR* =	1200	520
SCHR =	9	9
SHR =	9	9
SDay =	5	5
A =	1	1
EF =	250	250
AT =	70	70
SCAF =	4.20	4.20

* 95th percentile 8-hr breathing rates for moderate intensity activities

Construction Cancer Risk by Year - Maximum Preschool Impact Receptor Location

			Child - Exposure Information			Child			
	Exposure				Age*	Cancer		Maximun	n
Exposure	Duration		DPM Conc (ug/m3)		Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
1	1	1.5 - 2.5	2025 + 2026	2025 + 2026 0.0039		2.14	0.001	0.00	0.00
Total Increased	Cancer Risk					2.14			

* Children assumed to be 1.5 years of age with 1 year of exposure to construction emissions

Attachment 3: Cumulative Screening Information and Modeling Calculations

320 Sheridan Drive, Menlo Park, CA - Highway 101 Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Project MEI Receptor (1.5 meter receptor height)

Emission Year	2025
Receptor Information	Project MEI receptor
Number of Receptors	1
Receptor Height	1.5 meters
Receptor Distances	At Project MEI location

Meteorological Conditions

BAAQMD San Carlos Airport Met Data	2011 - 2015
Land Use Classification	Urban
Wind Speed	Variable
Wind Direction	Variable

Construction MEI Cancer Risk Maximum Concentrations

Meteorological	Concentration (µg/m3)					
Data Years	DPM	Exhaust TOG	Evaporative TOG			
2011 - 2015	0.0126	0.4170	0.3055			

Construction MEI PM2.5 Maximum Concentrations

Meteorological	PM2.5 Concentration (µg/m3)					
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5			
2011 - 2015	0.3259	0.2895	0.0364			

320 Sheridan Drive, Menlo Park, CA - Highway 101 Traffic Cancer Risk Impacts at Project MEIs - 1.5 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

 $Cancer \ Risk \ (per \ million) = \ CPF \ x \ \ Inhalation \ Dose \ x \ ASF \ x \ ED/AT \ x \ \ FAH \ x \ 1.0E6$

- Where: CPF = Cancer potency factor (mg/kg-day)⁻¹
 - ASF = Lancer potency factor (mg/kg-day) ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)A = Inhalation absorption factor

- EF = Exposure frequency (days/year)
- 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

	In	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Maximum - Exposure Information			Cone	centration (ug	(/m3)	Canc	er Risk (per	million)					
Exposure Year	Exposure Duration (years)	Age	Year	Age Sensitivity Factor	DPM	Exhaust TOG	Evaporative TOG	DPM	Exhaust TOG	Evaporative TOG	TOTAL		Maximum	
												Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2025	10	0.0126	0.4170	0.3055	0.171	0.032	0.0014	0.20	Index	PM2.5	PM2.5
1	1	0 - 1	2025	10	0.0126	0.4170	0.3055	2.068	0.391	0.0169	2.48	0.00252	0.29	0.33
2	1	1 - 2	2026	10	0.0126	0.4170	0.3055	2.068	0.391	0.0169	2.48			
3	1	2 - 3	2027	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
4	1	3 - 4	2028	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
5	1	4 - 5	2029	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
6	1	5 - 6	2030	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
7	1	6 - 7	2031	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
8	1	7 - 8	2032	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
9	1	8 - 9	2033	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
10	1	9 - 10	2034	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
11	1	10 - 11	2035	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
12	1	11 - 12	2036	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
13	1	12 - 13	2037	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
14	1	13 - 14	2038	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
15	1	14 - 15	2039	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
16	1	15 - 16	2040	3	0.0126	0.4170	0.3055	0.326	0.062	0.0027	0.39			
17	1	16-17	2041	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
18	1	17-18	2042	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
19	1	18-19	2043	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
20	1	19-20	2044	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
21	1	20-21	2045	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
22	1	21-22	2046	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
23	1	22-23	2047	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
24	1	23-24	2048	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
25	1	24-25	2049	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
26	1	25-26	2050	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
27	1	26-27	2051	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
28	1	27-28	2052	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
29	1	28-29	2053	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
30	1	29-30	2054	1	0.0126	0.4170	0.3055	0.036	0.007	0.0003	0.04			
Total Increase	d Cancer Ris	ik						9.37	1.772	0.076	11.22	I		

320 Sheridan Drive, Menlo Park, CA - Highway 101 Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Onsite MEI Receptor (meter receptor height)

Emission Year	2027
Receptor Information	Onsite MEI receptor
Number of Receptors	162
Receptor Height	4.5 & 1.5 meters
Receptor Distances	At Onsite MEI location

Meteorological Conditions

BAAQMD San Carlos Airport Met Data	2011 - 2015
Land Use Classification	Urban
Wind Speed	Variable
Wind Direction	Variable

Construction MEI Cancer Risk Maximum Concentrations

Meteorological	Concentration (µg/m3)			
Data Years	DPM	Exhaust TOG	Evaporative TOG	
2011 - 2015	0.0226	0.8361	0.6610	1st Floor
2011 - 2015	0.0208	0.7245	0.5704	2nd Floor

Construction MEI PM2.5 Maximum Concentrations

Meteorological	PM2.5 Concentration (µg/m3)				
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5		
2011 - 2015	0.7479	0.6732	0.0747	1st Floor	
2011 - 2015	0.6466	0.5820	0.0647	2nd Floor	

320 Sheridan Drive, Menlo Park, CA - Highway 101 Traffic Cancer Risk Impacts at Onsite MEI - 1.5 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

 $Cancer \ Risk \ (per \ million) = \ CPF \ x \ \ Inhalation \ Dose \ x \ ASF \ x \ ED/AT \ x \ \ FAH \ x \ 1.0E6$

- Where: CPF = Cancer potency factor (mg/kg-day)⁻¹
 - ASF = Lancer potency factor (mg/kg-day) ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

	In	Adult		
Age>	3rd Trimester	16 - 30		
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	iximum - Exposu	re Information		Cone	Concentration (ug/m3)		Cancer Risk (per million)				1		
	Exposure			Аде		Exhaust	Evaporative				TOTAL			
Exposure	Duration			Sensitivity	DPM	TOG	TOG	DPM	Exhaust	Evaporative				
Year	(vears)	Age	Year	Factor					TOG	TOG		1	Maximum	
	· · ·	U U										Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2027	10	0.0226	0.8361	0.6610	0.307	0.065	0.0030	0.38	Index	PM2.5	PM2.5
1	1	0 - 1	2027	10	0.0226	0.8361	0.6610	3.709	0.784	0.0365	4.53	0.00452	0.67	0.75
2	1	1 - 2	2028	10	0.0226	0.8361	0.6610	3.709	0.784	0.0365	4.53			
3	1	2 - 3	2029	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
4	1	3 - 4	2030	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
5	1	4 - 5	2031	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
6	1	5 - 6	2032	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
7	1	6 - 7	2033	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
8	1	7 - 8	2034	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
9	1	8 - 9	2035	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
10	1	9 - 10	2036	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
11	1	10 - 11	2037	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
12	1	11 - 12	2038	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
13	1	12 - 13	2039	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
14	1	13 - 14	2040	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
15	1	14 - 15	2041	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
16	1	15 - 16	2042	3	0.0226	0.8361	0.6610	0.584	0.123	0.0057	0.71			
17	1	16-17	2043	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
18	1	17-18	2044	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
19	1	18-19	2045	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
20	1	19-20	2046	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
21	1	20-21	2047	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
22	1	21-22	2048	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
23	1	22-23	2049	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
24	1	23-24	2050	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
25	1	24-25	2051	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
26	1	25-26	2052	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
27	1	26-27	2053	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
28	1	27-28	2054	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
29	1	28-29	2055	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08			
30	1	29-30	2056	1	0.0226	0.8361	0.6610	0.065	0.014	0.0006	0.08	1		
Total Increase	d Cancer Ris	sk						16.81	3.553	0.165	20.52	1		

320 Sheridan Drive, Menlo Park, CA - Highway 101 Traffic Cancer Risk - with MERV13 Filtration Impacts at Onsite MEI - 1.5 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: CPF = Cancer potency factor (mg/kg-day)⁻¹
 - ASF = Lancer potency factor (mg/kg-day) ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

	In	Adult		
Age>	3rd Trimester	16 - 30		
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	ıximum - Exposu	re Information		Cone	Concentration (ug/m3)		Cancer Risk (per million)						
	Exposure			1.00	-	Exhaust	Evanorative				TOTAL			
Exposure	Duration			Soneitivity	DPM	TOG	TOG	DPM	Fyhouet	Evenorative	101.12			
Year	(years)	Аде	Vear	Factor		100	100	511	TOG	TOG			Maximum	
	() • • • • •)	- set	I cui	Tuctor					100	100		Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2027	10	0.0068	0.8361	0.6610	0.092	0.065	0.0030	0.16	Index	PM2.5	PM2.5
1	1	0 - 1	2027	10	0.0068	0.8361	0.6610	1.113	0.784	0.0365	1.93	0.00135	0.20	0.22
2	1	1 - 2	2028	10	0.0068	0.8361	0.6610	1.113	0.784	0.0365	1.93			
3	1	2 - 3	2029	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
4	1	3 - 4	2030	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
5	1	4 - 5	2031	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
6	1	5 - 6	2032	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
7	1	6 - 7	2033	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
8	1	7 - 8	2034	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
9	1	8 - 9	2035	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
10	1	9 - 10	2036	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
11	1	10 - 11	2037	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
12	1	11 - 12	2038	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
13	1	12 - 13	2039	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
14	1	13 - 14	2040	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
15	1	14 - 15	2041	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
16	1	15 - 16	2042	3	0.0068	0.8361	0.6610	0.175	0.123	0.0057	0.30			
17	1	16-17	2043	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
18	1	17-18	2044	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
19	1	18-19	2045	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
20	1	19-20	2046	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
21	1	20-21	2047	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
22	1	21-22	2048	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
23	1	22-23	2049	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
24	1	23-24	2050	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
25	1	24-25	2051	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
26	1	25-26	2052	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03			
27	1	26-27	2053	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03	1		
28	1	27-28	2054	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03	1		
29	1	28-29	2055	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03	1		
30	1	29-30	2056	1	0.0068	0.8361	0.6610	0.019	0.014	0.0006	0.03	1		
Total Increase	d Cancer Ris	sk				1		5.04	3.553	0.165	8.76	1		

320 Sheridan Drive, Menlo Park, CA - Highway 101 Traffic Cancer Risk Impacts at Onsite MEI - 4.5 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: CPF = Cancer potency factor (mg/kg-day)⁻¹
 - ASF = Lancer potency factor (mg/kg-day) ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

	In	Adult		
Age>	3rd Trimester	16 - 30		
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	ximum - Exposu	re Information		Cone	centration (ug	/m3)	Cane	er Risk (per	million)				
Exposure	Exposure Duration	4	Y	Age Sensitivity	DPM	Exhaust TOG	Evaporative TOG	DPM	Exhaust	Evaporative	TOTAL		M	
Year	(years)	Age	Year	Factor					106	106			Maximum	
0	0.05	0.05 04	2025	10	0.0200	0.5045	0.5504	0.000	0.055	0.0007		Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2027	10	0.0208	0.7245	0.5704	0.283	0.056	0.0026	0.34	Index	PM2.5	PM2.5
1	1	0 - 1	2027	10	0.0208	0.7245	0.5704	3.416	0.679	0.0315	4.13	0.00416	0.58	0.65
2	1	1 - 2	2028	10	0.0208	0.7245	0.5704	5.410	0.679	0.0315	4.13			
3	1	2 - 3	2029	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
4	1	3 - 4	2030	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
5	1	4-5	2031	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
6	1	5-6	2032	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
/	1	6 - /	2033	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
8	1	/-8	2034	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
9	1	8-9	2035	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
10	1	9-10	2036	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
11	1	10 - 11	2037	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
12	1	11 - 12	2038	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
13	1	12 - 13	2039	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
14	1	15 - 14	2040	3	0.0208	0.7243	0.5704	0.538	0.107	0.0050	0.65			
15	1	14 - 15	2041	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
16	1	15 - 16	2042	3	0.0208	0.7245	0.5704	0.538	0.107	0.0050	0.65			
17	1	16-17	2043	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
18	1	1/-18	2044	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
19	1	18-19	2045	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
20	1	19-20	2046	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
21	1	20-21	2047	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
22	1	21-22	2048	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
23	1	22-23	2049	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
24	1	23-24	2050	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
25	1	24-25	2051	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07			
26	1	25-26	2052	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07	1		
27	1	26-27	2053	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07	1		
28	1	27-28	2054	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07	1		
29	1	28-29	2055	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07	1		
30	1	29-30	2056	1	0.0208	0.7245	0.5704	0.060	0.012	0.0006	0.07	1		
Total Increase	d Cancer Ris	sk			1	1		15.48	3.079	0.143	18.70	i		

Highway 2025.EF File Name: CT-EMFAC2021 Version: 1.0.2.0 Run Date: 2/22/2024 3:07:03 PM Area: San Mateo (SF) Analysis Year: 2025 Season: Annual _____ Vehicle Category VMT Fraction Diesel VMT Fraction Gas VMT Fraction Across Category Within Category Within Category Truck 1 0.026 0.385 0.601 Truck 2 0.019 0.133 0.820 Non-Truck 0.955 0.010 0.928 _____ Road Type: Freeway Silt Loading Factor: CARB 0.015 g/m2 Precipitation Correction: P = 74 days N = 365CARB days _____ Fleet Average Running Exhaust Emission Factors (grams/veh-mile) Pollutant Name 55 mph 60 mph 65 mph 70 mph PM2.5 0.001239 0.001362 0.001549 0.001650 TOG 0.015191 0.016050 0.017746 0.018973 Diesel PM 0.000452 0.000515 0.000581 0.000583 ______ Fleet Average Running Loss Emission Factors (grams/veh-hour) Pollutant Name **Emission Factor** TOG 0.837673 _____ Fleet Average Tire Wear Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.002080

Fleet Average Brake Wear Factors (grams/veh-mile)

	Pollutant Name	55 mph	60 mph	65 mph	70 mph
	PM2.5	0.002590	0.002290	0.001990	0.001990
======					
Fleet	Average Road Dust	Factors (grams/	/eh-mile)		
	-		·		
	Pollutant Name	Emission Factor			
	PM2.5	0.008127			

Highway 2027.EF File Name: 1.0.2.0 CT-EMFAC2021 Version: Run Date: 2/22/2024 3:07:15 PM Area: San Mateo (SF) Analysis Year: 2027 Season: Annual _____ Vehicle Category VMT Fraction Diesel VMT Fraction Gas VMT Fraction Across Category Within Category Within Category Truck 1 0.026 0.387 0.573 Truck 2 0.019 0.801 0.132 Non-Truck 0.955 0.010 0.924 _____ Road Type: Freeway Silt Loading Factor: CARB 0.015 g/m2 Precipitation Correction: P = 74 days N = 365CARB days _____ Fleet Average Running Exhaust Emission Factors (grams/veh-mile) Pollutant Name 55 mph 60 mph 65 mph 70 mph PM2.5 0.001107 0.001220 0.001392 0.001481 TOG 0.013302 0.014031 0.015487 0.016534 Diesel PM 0.000401 0.000461 0.000526 0.000528 ______ Fleet Average Running Loss Emission Factors (grams/veh-hour) Pollutant Name **Emission Factor** TOG 0.784870 _____ Fleet Average Tire Wear Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.002079

Fleet Average Brake Wear Factors (grams/veh-mile)

Pollutant Name	55 mph	60 mph	65 mph	70 mph
PM2.5	0.002587	0.002286	0.001984	0.001984
=======================================				
Fleet Average Road Dust	Factors (grams/\	/eh-mile)		
-		·		
Pollutant Name	Emission Factor			
PM2.5	0.008231			

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2025

											_		I	line Area		
Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height (m)	(Sigma z) Initial Vertical Dimension
DPM_NB_101	Highway 101 Northbound	NB	5	747.9	0.46	24.3	79.7	3.4	66.9	80,080	18,165	195,526	1.382E-08	1.019E-08	6.8	3.16
DPM_SB_101	Highway 101 Southbound	SB	5	751.8	0.47	24.3	79.7	3.4	65.4	80,080	18,260	196,546	1.382E-08	1.019E-08	6.8	3.16
									Total	160,159						

Emission Factors

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle (g/VMT)	0.00058	0.000581	0.000515	0.000452

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and DPM Emissions - DPM_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1135	8.54E-05	9	5.65%	4527	3.01E-04	17	6.02%	4819	3.61E-04
2	1.14%	911	6.86E-05	10	5.63%	4510	3.38E-04	18	5.93%	4747	3.56E-04
3	1.06%	852	6.41E-05	11	5.51%	4411	3.31E-04	19	5.69%	4557	3.42E-04
4	1.21%	967	7.28E-05	12	5.63%	4510	3.38E-04	20	5.05%	4044	3.03E-04
5	1.62%	1296	9.75E-05	13	5.61%	4493	3.37E-04	21	4.24%	3393	2.55E-04
6	2.90%	2322	1.75E-04	14	5.72%	4583	3.44E-04	22	3.74%	2997	2.26E-04
7	4.30%	3443	2.58E-04	15	5.88%	4712	3.53E-04	23	2.82%	2261	1.70E-04
8	5.33%	4267	3.20E-04	16	5.96%	4777	3.58E-04	24	1.93%	1545	1.16E-04
								Total		80,080	

2025 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.41%	1126	8.52E-05	9	5.37%	4299	2.52E-04	17	6.75%	5403	3.61E-04
2	0.86%	690	5.22E-05	10	5.39%	4320	2.53E-04	18	6.54%	5235	3.50E-04
3	0.59%	476	3.60E-05	11	5.83%	4673	3.12E-04	19	5.75%	4605	3.47E-04
4	0.47%	377	2.85E-05	12	5.94%	4754	3.58E-04	20	4.90%	3924	2.96E-04
5	0.73%	587	4.44E-05	13	6.08%	4869	3.67E-04	21	4.54%	3638	2.75E-04
6	1.59%	1275	9.65E-05	14	6.15%	4926	3.71E-04	22	4.20%	3360	2.54E-04
7	2.90%	2322	1.75E-04	15	6.39%	5115	3.86E-04	23	3.60%	2881	2.18E-04
8	5.08%	4071	2.72E-04	16	6.60%	5286	3.99E-04	24	2.34%	1871	1.42E-04
								Total		80,080	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height (m)	(Sigma z) Initial Vertical Dimension
PM2.5_NB_101	Highway 101 Northbound	NB	5	747.9	0.46	24.3	80	1.3	66.875	80,080	18,165	195,526	3.91E-08	2.88E-08	2.6	1.21
PM2.5_SB_101	Highway 101 Southbound	SB	5	751.8	0.47	24.3	80	1.3	65.416667 Total	80,080 160,159	18,260	196,546	3.91E-08	2.88E-08	2.6	1.21

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle (g/VMT)	0.001650	0.00155	0.001362	0.001239

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and PM2.5 Emissions - PM2.5 NB 101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1135	2.42E-04	9	5.65%	4527	7.96E-04	17	6.02%	4819	9.64E-04
2	1.14%	911	1.94E-04	10	5.63%	4510	9.02E-04	18	5.93%	4747	9.49E-04
3	1.06%	852	1.81E-04	11	5.51%	4411	8.82E-04	19	5.69%	4557	9.11E-04
4	1.21%	967	2.06E-04	12	5.63%	4510	9.02E-04	20	5.05%	4044	8.09E-04
5	1.62%	1296	2.76E-04	13	5.61%	4493	8.98E-04	21	4.24%	3393	7.23E-04
6	2.90%	2322	4.95E-04	14	5.72%	4583	9.16E-04	22	3.74%	2997	6.38E-04
7	4.30%	3443	6.89E-04	15	5.88%	4712	9.42E-04	23	2.82%	2261	4.81E-04
8	5.33%	4267	8.53E-04	16	5.96%	4777	9.55E-04	24	1.93%	1545	3.29E-04
								Total		80,080	

2025 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM2.5_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.41%	1126	2.41E-04	9	5.37%	4299	6.91E-04	17	6.75%	5403	9.55E-04
2	0.86%	690	1.48E-04	10	5.39%	4320	6.95E-04	18	6.54%	5235	9.25E-04
3	0.59%	476	1.02E-04	11	5.83%	4673	8.26E-04	19	5.75%	4605	9.26E-04
4	0.47%	377	8.07E-05	12	5.94%	4754	9.55E-04	20	4.90%	3924	7.89E-04
5	0.73%	587	1.26E-04	13	6.08%	4869	9.79E-04	21	4.54%	3638	7.79E-04
6	1.59%	1275	2.73E-04	14	6.15%	4926	9.90E-04	22	4.20%	3360	7.19E-04
7	2.90%	2322	4.67E-04	15	6.39%	5115	1.03E-03	23	3.60%	2881	6.17E-04
8	5.08%	4071	7.19E-04	16	6.60%	5286	1.06E-03	24	2.34%	1871	4.01E-04
			-					Total		80,080	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height	(Sigma z) Initial Vertical Dimension
TEXH_NB_101	Highway 101 Northbound	NB	5	747.9	0.46	24.3	80	1.3	66.875	80,080	18,165	195,526	4.50E-07	3.32E-07	2.6	1.21
TEXH_SB_101	Highway 101 Southbound	SB	5	751.8	0.47	24.3	80	1.3	65.416667	80,080	18,260	196,546	4.50E-07	3.32E-07	2.6	1.21
									Total	160,159						

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle (g/VMT)	0.01897	0.01775	0.01605	0.01519

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1135	2.78E-03	9	5.65%	4527	9.38E-03	17	6.02%	4819	1.10E-02
2	1.14%	911	2.23E-03	10	5.63%	4510	1.03E-02	18	5.93%	4747	1.09E-02
3	1.06%	852	2.09E-03	11	5.51%	4411	1.01E-02	19	5.69%	4557	1.04E-02
4	1.21%	967	2.37E-03	12	5.63%	4510	1.03E-02	20	5.05%	4044	9.26E-03
5	1.62%	1296	3.17E-03	13	5.61%	4493	1.03E-02	21	4.24%	3393	8.31E-03
6	2.90%	2322	5.69E-03	14	5.72%	4583	1.05E-02	22	3.74%	2997	7.34E-03
7	4.30%	3443	7.89E-03	15	5.88%	4712	1.08E-02	23	2.82%	2261	5.54E-03
8	5.33%	4267	9.77E-03	16	5.96%	4777	1.09E-02	24	1.93%	1545	3.78E-03
			-	_	•		-	Total	•	80,080	

2025 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.42%	1135	2.79E-03	9	5.65%	4527	8.92E-03	17	6.02%	4819	1.00E-02
2	1.14%	911	2.24E-03	10	5.63%	4510	8.89E-03	18	5.93%	4747	9.89E-03
3	1.06%	852	2.10E-03	11	5.51%	4411	9.19E-03	19	5.69%	4557	1.05E-02
4	1.21%	967	2.38E-03	12	5.63%	4510	1.04E-02	20	5.05%	4044	9.31E-03
5	1.62%	1296	3.19E-03	13	5.61%	4493	1.03E-02	21	4.24%	3393	8.35E-03
6	2.90%	2322	5.72E-03	14	5.72%	4583	1.06E-02	22	3.74%	2997	7.38E-03
7	4.30%	3443	7.93E-03	15	5.88%	4712	1.09E-02	23	2.82%	2261	5.57E-03
8	5.33%	4267	8.89E-03	16	5.96%	4777	1.10E-02	24	1.93%	1545	3.80E-03
								Total		80,080	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height	(Sigma z) Initial Vertical Dimension
TEVAP_NB_101	Highway 101 Northbound	NB	5	747.9	0.46	24.3	80	1.3	66.875	80,080	18,165	195,526	2.84E-07	2.09E-07	2.6	1.21
TEVAP_SB_101	Highway 101 Southbound	SB	5	751.8	0.47	24.3	80	1.3	65.416667 Total	80,080	18,260	196,546	2.84E-07	2.09E-07	2.6	1.21

Emission Factors - PM2.5 - Evaporative TOG

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle per Hour (g/hour)	0.83767	0.83767	0.83767	0.83767
Emissions per Vehicle per Mile (g/VMT)	0.01197	0.01289	0.01396	0.01523

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1135	1.75E-03	9	5.65%	4527	8.16E-03	17	6.02%	4819	8.02E-03
2	1.14%	911	1.41E-03	10	5.63%	4510	7.50E-03	18	5.93%	4747	7.90E-03
3	1.06%	852	1.32E-03	11	5.51%	4411	7.34E-03	19	5.69%	4557	7.58E-03
4	1.21%	967	1.49E-03	12	5.63%	4510	7.50E-03	20	5.05%	4044	6.73E-03
5	1.62%	1296	2.00E-03	13	5.61%	4493	7.47E-03	21	4.24%	3393	5.24E-03
6	2.90%	2322	3.59E-03	14	5.72%	4583	7.62E-03	22	3.74%	2997	4.63E-03
7	4.30%	3443	5.73E-03	15	5.88%	4712	7.84E-03	23	2.82%	2261	3.49E-03
8	5.33%	4267	7.10E-03	16	5.96%	4777	7.95E-03	24	1.93%	1545	2.39E-03
								Total		80,080	

2025 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.42%	1135	1.76E-03	9	5.65%	4527	8.95E-03	17	6.02%	4819	8.73E-03
2	1.14%	911	1.42E-03	10	5.63%	4510	8.91E-03	18	5.93%	4747	8.60E-03
3	1.06%	852	1.32E-03	11	5.51%	4411	7.99E-03	19	5.69%	4557	7.62E-03
4	1.21%	967	1.50E-03	12	5.63%	4510	7.54E-03	20	5.05%	4044	6.76E-03
5	1.62%	1296	2.01E-03	13	5.61%	4493	7.51E-03	21	4.24%	3393	5.27E-03
6	2.90%	2322	3.61E-03	14	5.72%	4583	7.66E-03	22	3.74%	2997	4.65E-03
7	4.30%	3443	5.76E-03	15	5.88%	4712	7.88E-03	23	2.82%	2261	3.51E-03
8	5.33%	4267	7.73E-03	16	5.96%	4777	7.99E-03	24	1.93%	1545	2.40E-03
								Total		80,080	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height	(Sigma z) Initial Vertical Dimension
FUG_NB_101	Highway 101 Northbound	NB	5	747.9	0.46	24.3	80	1.3	66.875	80,080	18,165	195,526	2.89E-07	2.13E-07	2.6	1.21
FUG_SB_101	Highway 101 Southbound	SB	5	751.8	0.47	24.3	80	1.3	65.416667 Total	80,080 160,159	18,260	196,546	2.89E-07	2.13E-07	2.6	1.21

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Tire Wear - Emissions per Vehicle (g/VMT)	0.00208	0.00208	0.00208	0.00208
Brake Wear - Emissions per Vehicle (g/VMT)	0.00199	0.00199	0.00229	0.00259
Road Dust - Emissions per Vehicle (g/VMT)	0.00813	0.00813	0.00813	0.00813
tal Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.01220	0.01220	0.01250	0.01280

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1135	1.79E-03	9	5.65%	4527	7.30E-03	17	6.02%	4819	7.59E-03
2	1.14%	911	1.43E-03	10	5.63%	4510	7.10E-03	18	5.93%	4747	7.47E-03
3	1.06%	852	1.34E-03	11	5.51%	4411	6.95E-03	19	5.69%	4557	7.17E-03
4	1.21%	967	1.52E-03	12	5.63%	4510	7.10E-03	20	5.05%	4044	6.37E-03
5	1.62%	1296	2.04E-03	13	5.61%	4493	7.07E-03	21	4.24%	3393	5.34E-03
6	2.90%	2322	3.66E-03	14	5.72%	4583	7.22E-03	22	3.74%	2997	4.72E-03
7	4.30%	3443	5.42E-03	15	5.88%	4712	7.42E-03	23	2.82%	2261	3.56E-03
8	5.33%	4267	6.72E-03	16	5.96%	4777	7.52E-03	24	1.93%	1545	2.43E-03
								Total		80,080	

2025 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.42%	1135	1.80E-03	9	5.65%	4527	7.52E-03	17	6.02%	4819	7.81E-03
2	1.14%	911	1.44E-03	10	5.63%	4510	7.49E-03	18	5.93%	4747	7.70E-03
3	1.06%	852	1.35E-03	11	5.51%	4411	7.15E-03	19	5.69%	4557	7.21E-03
4	1.21%	967	1.53E-03	12	5.63%	4510	7.14E-03	20	5.05%	4044	6.40E-03
5	1.62%	1296	2.05E-03	13	5.61%	4493	7.11E-03	21	4.24%	3393	5.37E-03
6	2.90%	2322	3.67E-03	14	5.72%	4583	7.25E-03	22	3.74%	2997	4.74E-03
7	4.30%	3443	5.45E-03	15	5.88%	4712	7.46E-03	23	2.82%	2261	3.58E-03
8	5.33%	4267	6.92E-03	16	5.96%	4777	7.56E-03	24	1.93%	1545	2.45E-03
								Total		80,080	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2027

												Line Area					
I	Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height (m)	(Sigma z) Initial Vertical Dimension
DF	PM_NB_101	Highway 101 Northbound	NB	5	582.6	0.36	24.3	79.7	3.4	66.9	81,620	14,150	152,311	1.276E-08	9.409E-09	6.8	3.16
DI	PM_SB_101	Highway 101 Southbound	SB	5	559.5	0.35	24.3	79.7	3.4	65.4	81,620	13,589	146,272	1.276E-08	9.409E-09	6.8	3.16
										Total	163,239						

Emission Factors

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle (g/VMT)	0.00053	0.000526	0.000461	0.000401

Emisson Factors from CT-EMFAC2017

2027 Hourly Traffic Volumes and DPM Emissions - DPM_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1157	6.14E-05	9	5.65%	4614	2.14E-04	17	6.02%	4911	2.60E-04
2	1.14%	929	4.93E-05	10	5.63%	4597	2.43E-04	18	5.93%	4839	2.56E-04
3	1.06%	868	4.61E-05	11	5.51%	4496	2.38E-04	19	5.69%	4644	2.46E-04
4	1.21%	986	5.24E-05	12	5.63%	4596	2.43E-04	20	5.05%	4122	2.18E-04
5	1.62%	1321	7.01E-05	13	5.61%	4580	2.42E-04	21	4.24%	3458	1.84E-04
6	2.90%	2367	1.26E-04	14	5.72%	4671	2.47E-04	22	3.74%	3055	1.62E-04
7	4.30%	3510	1.86E-04	15	5.88%	4803	2.54E-04	23	2.82%	2304	1.22E-04
8	5.33%	4349	2.30E-04	16	5.96%	4868	2.58E-04	24	1.93%	1575	8.36E-05
								Total		81,620	

2027 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.41%	1147	5.85E-05	9	5.37%	4382	1.70E-04	17	6.75%	5507	2.45E-04
2	0.86%	703	3.58E-05	10	5.39%	4403	1.70E-04	18	6.54%	5336	2.38E-04
3	0.59%	485	2.47E-05	11	5.83%	4762	2.12E-04	19	5.75%	4693	2.38E-04
4	0.47%	384	1.96E-05	12	5.94%	4845	2.46E-04	20	4.90%	4000	2.03E-04
5	0.73%	598	3.05E-05	13	6.08%	4962	2.52E-04	21	4.54%	3707	1.89E-04
6	1.59%	1300	6.63E-05	14	6.15%	5021	2.55E-04	22	4.20%	3424	1.75E-04
7	2.90%	2366	1.20E-04	15	6.39%	5213	2.65E-04	23	3.60%	2936	1.50E-04
8	5.08%	4149	1.85E-04	16	6.60%	5388	2.74E-04	24	2.34%	1907	9.72E-05
								Total		81,620	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2027

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height (m)	(Sigma z) Initial Vertical Dimension
PM2.5_NB_101	Highway 101 Northbound	NB	5	582.6	0.36	24.3	80	1.3	66.875	81,620	14,150	152,311	3.58E-08	2.64E-08	2.6	1.21
PM2.5_SB_101	Highway 101 Southbound	SB	5	559.5	0.35	24.3	80	1.3	65.416667 Total	81,620 163,239	13,589	146,272	3.58E-08	2.64E-08	2.6	1.21

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle (g/VMT)	0.001481	0.00139	0.001220	0.001107

Emisson Factors from CT-EMFAC2017

2027 Hourly Traffic Volumes and PM2.5 Emissions - PM2.5 NB 101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1157	1.72E-04	9	5.65%	4614	5.66E-04	17	6.02%	4911	6.87E-04
2	1.14%	929	1.38E-04	10	5.63%	4597	6.43E-04	18	5.93%	4839	6.77E-04
3	1.06%	868	1.29E-04	11	5.51%	4496	6.29E-04	19	5.69%	4644	6.50E-04
4	1.21%	986	1.47E-04	12	5.63%	4596	6.43E-04	20	5.05%	4122	5.77E-04
5	1.62%	1321	1.97E-04	13	5.61%	4580	6.41E-04	21	4.24%	3458	5.15E-04
6	2.90%	2367	3.52E-04	14	5.72%	4671	6.54E-04	22	3.74%	3055	4.55E-04
7	4.30%	3510	4.91E-04	15	5.88%	4803	6.72E-04	23	2.82%	2304	3.43E-04
8	5.33%	4349	6.09E-04	16	5.96%	4868	6.81E-04	24	1.93%	1575	2.35E-04
								Total		81,620	

2027 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM2.5_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.41%	1147	1.64E-04	9	5.37%	4382	4.68E-04	17	6.75%	5507	6.49E-04
2	0.86%	703	1.01E-04	10	5.39%	4403	4.71E-04	18	6.54%	5336	6.29E-04
3	0.59%	485	6.94E-05	11	5.83%	4762	5.61E-04	19	5.75%	4693	6.31E-04
4	0.47%	384	5.50E-05	12	5.94%	4845	6.51E-04	20	4.90%	4000	5.38E-04
5	0.73%	598	8.55E-05	13	6.08%	4962	6.67E-04	21	4.54%	3707	5.30E-04
6	1.59%	1300	1.86E-04	14	6.15%	5021	6.75E-04	22	4.20%	3424	4.90E-04
7	2.90%	2366	3.18E-04	15	6.39%	5213	7.01E-04	23	3.60%	2936	4.20E-04
8	5.08%	4149	4.89E-04	16	6.60%	5388	7.24E-04	24	2.34%	1907	2.73E-04
			-					Total		81,620	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions Year = 2027

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height	(Sigma z) Initial Vertical Dimension
TEXH_NB_101	Highway 101 Northbound	NB	5	582.6	0.36	24.3	80	1.3	66.875	81,620	14,150	152,311	4.00E-07	2.95E-07	2.6	1.21
TEXH_SB_101	Highway 101 Southbound	SB	5	559.5	0.35	24.3	80	1.3	65.416667	81,620	13,589	146,272	4.00E-07	2.95E-07	2.6	1.21
									Total	163,239						

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle (g/VMT)	0.01653	0.01549	0.01403	0.01330

Emisson Factors from CT-EMFAC2017

2027 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1157	1.92E-03	9	5.65%	4614	6.51E-03	17	6.02%	4911	7.65E-03
2	1.14%	929	1.54E-03	10	5.63%	4597	7.16E-03	18	5.93%	4839	7.54E-03
3	1.06%	868	1.44E-03	11	5.51%	4496	7.00E-03	19	5.69%	4644	7.23E-03
4	1.21%	986	1.64E-03	12	5.63%	4596	7.16E-03	20	5.05%	4122	6.42E-03
5	1.62%	1321	2.20E-03	13	5.61%	4580	7.13E-03	21	4.24%	3458	5.75E-03
6	2.90%	2367	3.93E-03	14	5.72%	4671	7.28E-03	22	3.74%	3055	5.08E-03
7	4.30%	3510	5.47E-03	15	5.88%	4803	7.48E-03	23	2.82%	2304	3.83E-03
8	5.33%	4349	6.77E-03	16	5.96%	4868	7.58E-03	24	1.93%	1575	2.62E-03
								Total		81,620	

2027 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.42%	1157	1.85E-03	9	5.65%	4614	5.93E-03	17	6.02%	4911	6.65E-03
2	1.14%	929	1.48E-03	10	5.63%	4597	5.91E-03	18	5.93%	4839	6.56E-03
3	1.06%	868	1.39E-03	11	5.51%	4496	6.09E-03	19	5.69%	4644	6.95E-03
4	1.21%	986	1.57E-03	12	5.63%	4596	6.87E-03	20	5.05%	4122	6.16E-03
5	1.62%	1321	2.11E-03	13	5.61%	4580	6.85E-03	21	4.24%	3458	5.52E-03
6	2.90%	2367	3.78E-03	14	5.72%	4671	6.99E-03	22	3.74%	3055	4.88E-03
7	4.30%	3510	5.25E-03	15	5.88%	4803	7.18E-03	23	2.82%	2304	3.68E-03
8	5.33%	4349	5.89E-03	16	5.96%	4868	7.28E-03	24	1.93%	1575	2.51E-03
								Total		81,620	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions Year = 2027

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height	(Sigma z) Initial Vertical Dimension
TEVAP_NB_101	Highway 101 Northbound	NB	5	582.6	0.36	24.3	80	1.3	66.875	81,620	14,150	152,311	2.71E-07	2.00E-07	2.6	1.21
TEVAP_SB_101	Highway 101 Southbound	SB	5	559.5	0.35	24.3	80	1.3	65.416667 Total	81,620	13,589	146,272	2.71E-07	2.00E-07	2.6	1.21

Emission Factors - PM2.5 - Evaporative TOG

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Emissions per Vehicle per Hour (g/hour)	0.78487	0.78487	0.78487	0.78487
Emissions per Vehicle per Mile (g/VMT)	0.01121	0.01207	0.01308	0.01427

Emisson Factors from CT-EMFAC2017

2027 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1157	1.30E-03	9	5.65%	4614	6.07E-03	17	6.02%	4911	5.96E-03
2	1.14%	929	1.05E-03	10	5.63%	4597	5.58E-03	18	5.93%	4839	5.88E-03
3	1.06%	868	9.79E-04	11	5.51%	4496	5.46E-03	19	5.69%	4644	5.64E-03
4	1.21%	986	1.11E-03	12	5.63%	4596	5.58E-03	20	5.05%	4122	5.00E-03
5	1.62%	1321	1.49E-03	13	5.61%	4580	5.56E-03	21	4.24%	3458	3.90E-03
6	2.90%	2367	2.67E-03	14	5.72%	4671	5.67E-03	22	3.74%	3055	3.44E-03
7	4.30%	3510	4.26E-03	15	5.88%	4803	5.83E-03	23	2.82%	2304	2.60E-03
8	5.33%	4349	5.28E-03	16	5.96%	4868	5.91E-03	24	1.93%	1575	1.78E-03
								Total		81,620	

2027 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.42%	1157	1.25E-03	9	5.65%	4614	6.36E-03	17	6.02%	4911	6.20E-03
2	1.14%	929	1.01E-03	10	5.63%	4597	6.34E-03	18	5.93%	4839	6.11E-03
3	1.06%	868	9.40E-04	11	5.51%	4496	5.68E-03	19	5.69%	4644	5.42E-03
4	1.21%	986	1.07E-03	12	5.63%	4596	5.36E-03	20	5.05%	4122	4.81E-03
5	1.62%	1321	1.43E-03	13	5.61%	4580	5.34E-03	21	4.24%	3458	3.74E-03
6	2.90%	2367	2.56E-03	14	5.72%	4671	5.45E-03	22	3.74%	3055	3.31E-03
7	4.30%	3510	4.09E-03	15	5.88%	4803	5.60E-03	23	2.82%	2304	2.49E-03
8	5.33%	4349	5.49E-03	16	5.96%	4868	5.68E-03	24	1.93%	1575	1.71E-03
								Total		81,620	

320 Sheridan Drive, Menlo Park, CA - Off-Site Residential Cumulative Traffic - Highway 101 Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions Year = 2027

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day	Area (sq m)	Area (sq ft)	Emission (g/s/m2)	Emission (lb/hr/ft2)	Initial Vertical height	(Sigma z) Initial Vertical Dimension
FUG_NB_101	Highway 101 Northbound	NB	5	582.6	0.36	24.3	80	1.3	66.875	81,620	14,150	152,311	2.97E-07	2.19E-07	2.6	1.21
FUG_SB_101	Highway 101 Southbound	SB	5	559.5	0.35	24.3	80	1.3	65.416667 Total	81,620 163,239	13,589	146,272	2.97E-07	2.19E-07	2.6	1.21

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	70	65	60	55
Tire Wear - Emissions per Vehicle (g/VMT)	0.00208	0.00208	0.00208	0.00208
Brake Wear - Emissions per Vehicle (g/VMT)	0.00198	0.00198	0.00229	0.00259
Road Dust - Emissions per Vehicle (g/VMT)	0.00823	0.00823	0.00823	0.00823
tal Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.01229	0.01229	0.01260	0.01290

Emisson Factors from CT-EMFAC2017

2027 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_NB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.42%	1157	1.43E-03	9	5.65%	4614	5.84E-03	17	6.02%	4911	6.07E-03
2	1.14%	929	1.15E-03	10	5.63%	4597	5.68E-03	18	5.93%	4839	5.98E-03
3	1.06%	868	1.07E-03	11	5.51%	4496	5.56E-03	19	5.69%	4644	5.74E-03
4	1.21%	986	1.22E-03	12	5.63%	4596	5.68E-03	20	5.05%	4122	5.10E-03
5	1.62%	1321	1.63E-03	13	5.61%	4580	5.66E-03	21	4.24%	3458	4.28E-03
6	2.90%	2367	2.93E-03	14	5.72%	4671	5.78E-03	22	3.74%	3055	3.78E-03
7	4.30%	3510	4.34E-03	15	5.88%	4803	5.94E-03	23	2.82%	2304	2.85E-03
8	5.33%	4349	5.38E-03	16	5.96%	4868	6.02E-03	24	1.93%	1575	1.95E-03
								Total		81,620	

2027 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_SB_101

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.42%	1157	1.37E-03	9	5.65%	4614	5.75E-03	17	6.02%	4911	5.97E-03
2	1.14%	929	1.10E-03	10	5.63%	4597	5.73E-03	18	5.93%	4839	5.89E-03
3	1.06%	868	1.03E-03	11	5.51%	4496	5.47E-03	19	5.69%	4644	5.51E-03
4	1.21%	986	1.17E-03	12	5.63%	4596	5.46E-03	20	5.05%	4122	4.89E-03
5	1.62%	1321	1.57E-03	13	5.61%	4580	5.44E-03	21	4.24%	3458	4.11E-03
6	2.90%	2367	2.81E-03	14	5.72%	4671	5.55E-03	22	3.74%	3055	3.63E-03
7	4.30%	3510	4.17E-03	15	5.88%	4803	5.70E-03	23	2.82%	2304	2.74E-03
8	5.33%	4349	5.29E-03	16	5.96%	4868	5.78E-03	24	1.93%	1575	1.87E-03
								Total		81,620	

Risk & Hazard Stationary Source Inquiry Form

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

Table A: Request	ter Contact Information
Date of Request	2/7/2024
Contact Name	Jordyn Bauer
Affiliation	Illingworth & Rodkin, Inc.
Phone	707-794-0400 x106
Email	jbauer@illingworthrodkin.co m
Project Name	320 Sheridan
Address	320 Sheridan
City	Menlo Park
County	San Mateo
Type (residential, commercial, mixed	Peridential
Project Size (# of	itesidentiai
units or building	
square feet)	88 du
Comments:	

For Air District assistance, the following steps must be completed:

1. Complete all the contact and project information requested in

ested in **Table A** complete forms will not be processed. Please include a project site map.

2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's Information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration.

3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.

4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Earth address search box to confirm the source's address location. Please report any mapping errors to the District.

5. List the stationary source information in Table B

lue section only.

6. Note that a small percentage of the stational we Health Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will be noted by an asterisk next to the Plant Name (Map B on right). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.

7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

Note that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

Submit forms, maps, and questions to Matthew Hanson at 415-749-8733, or mhanson@baaqmd.gov

			Table B: G	oogle Eartl	n data					Project N	IEI		
Distance from										Distance	Adjusted	Adjusted	
Receptor (feet) or										Adjustment	Cancer Risk	Hazard	Adjusted
MEI ¹	Plant No.	Facility Name	Address	Cancer Risk ²	Hazard Risk ²	PM _{2.5} ²	Source No. ³ Type of Source ⁴	• Fuel Code⁵	Status/Comments	Multiplier	Estimate	Risk	PM2.5
50	19	9890 CALTRANS	Rt 101	0.153	0	0	Generator		2021 Dataset	1.00	0.15	0.00000	0.0000
1000+	23	3192 Meta Platforms Inc-MPK 28	-29 164 Jefferson Drive	9.707	0.024	0.012	Generator		2021 Dataset	0.04	0.39	0.00096	0.0005
1000+	200	0438 Facebook Inc.	162 JEFFERSON DR	4.816	0.001	0.006	Generator		2021 Dataset	0.04	0.19	0.000	0.0002

Footnotes:

1. Maximally exposed individual

2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.

3. Each plant may have multiple permits and sources.

4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.

5. Fuel codes: 98 = diesel, 189 = Natural Gas.

6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.

8. Engineer who completed the HRSA. For District purposes only.

9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.

10. The HRSA "Chronic Health" number represents the Hazard Index.

11. Further information about common sources:

a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.

b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of 0.003 or

c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010.

Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.

d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should reflect

e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.

f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.

g. This spray booth is considered to be insignificant.

Date last updated:

03/13/2018

		Project Si	Project Site								
Distance from		Distance	Adjusted	Adjusted							
Receptor (feet)		Adjustment	Cancer Risk	Hazard	Adjusted						
or MEI	FACID (Plant No.)	Multiplier	Estimate	Risk	PM2.5						
50	19890	0.28	0.04	0.0000	0.0000						
745	23192	0.07	0.68	0.0017	0.0008						
950	200438	0.04	0.19	0.000	0.0002						

. ...

Area of Interest (AOI) Information

Area : 4,756,988.15 ft²

Feb 7 2024 12:12:48 Pacific Standard Time

			0.27.07	757D-0
	0	0.05	D.1	0.2 mi
Permitted Stationary Sources	-	0.07	0.15	0.3 km

Map cats © OpenDreetNap contributors. Viorosoft: Facebook, inc. and its affiliates, Esri Community Maps contributors. Map layer by Esri

Summary

Name	Count	Area(ft²)	Length(ft)
Permitted Stationary Sources	2	N/A	N/A

Permitted Stationary Sources

#	Facility_I	Facility_N	Address	City		State
1	19890	CALTRANS	Rt 101	Menlo Park		CA
2	23192	Meta Platforms Inc-MPł 28-29	Jefferson Drive	Menlo Park		CA
#	Zip	County	Latitude	Longitude		Details
1	94025	San Mateo	37.477441	-122.171195		Generator
2	94025	San Mateo	37.479238	-122.171728		Generator
#	NAICS	NAICS_Sect	NAICS_Subs	NAICS_Indu		Cancer Ris
1	488999	Transportation and Warehousing	Support Activities for Transportation	All Other Activities Transpo	r Support s for rtation	0.153000
1	488999 518210	Transportation and Warehousing Information	Support Activities for Transportation Data Processing, Hosting and Related Services	All Other Activities Transpo Data Pro Hosting, Services	r Support s for rtation pcessing, and Related	0.153000 9.707000
1	488999 518210	Transportation and Warehousing Information	Support Activities for Transportation Data Processing, Hosting and Related Services	All Other Activities Transpo Data Pro Hosting, Services	r Support s for rtation pocessing, and Related	0.153000 9.707000
1 2 #	488999 518210 Chronic_I	Transportation and Warehousing Information	Support Activities for Transportation Data Processing, Hosting and Related Services PM25	All Other Activities Transpo Data Pro Hosting, Services	r Support s for rtation pocessing, and Related	0.153000 9.707000 Count

NOTE: A larger buffer than 1000 feet may be warranted depending on proximity to significant sources.

1

0.012000

2

0.024000